Dynamics of circulations within the stratiform regions of squall lines, The (original) (raw)

Abstract

THE DYNAMICS OF CIRCULATIONS WITHIN THE STRATIFORM REGIONS OF SQUALL LINES A dynamic version of the two dimensional kinematic cloud model of Rutledge and Houze (1987) has been developed to investigate the effect of microphysics on circulations within the stratiform region associated with mesoscale convective systems. The design of the model allows for specified inputs of hydrometeors, water vapor and heat from the convective region. While there are some disadvantages to this approach, there are also distinct advantages: (1) the complexities of initialization and simulation of a realistic convective line are avoided and (2) many simulations (over 100) were conducted to examine the sensitivity of the results to many physical processes and assumptions. The 10-11 June 1985 PRE-STORM squall line is simulated first, with initialization based upon appropriate soundings, heat budgets and I-D cumulonimbus model results. A 5 km mesh size is used, a value between those typically used in cloud models and in mesoscale models. The model accurately simulates the evolution of the stratiform rain area with a transition zone broadening over time, especially late in the simulation after leading convective elements weaken. Significant ascent is simulated with peak intensities agreeing with observations. In-situ condensate production within the updraft contributes increasingly to the surface rainfall, an,d the ratio of condensate produced within the mesoscale updraft to that advected from the convective line generally agrees with previous water budgets of squall lines. Simulated horizontal flows agree qualitatively with observations, and include a sloping rear-inflow jet that develops with peak magnitudes approaching those observed. Surface rainfall is underestimated as in previous 2D models, possibly implying the importance of 3D convergent forcing of strong ascent in the anvil cloud. Although peak i ACKNOWLEDGEMENTS I would like to thank Prof. Richard Johnson for his guidance, sharing of ideas, and encouragement throughout the doctoral process. Additionally I would like to thank my committee, Prof. Steven Rutledge, Prof. Wayne Schubert and Prof. Reza Zoughi, for their assistance and comments. Special thanks is given to James Bresch for his help with computer programming and debugging during the development of the model. I would also like to thank John Adams for providing the code from the MUDPACK elliptic equation solver.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (211)

  1. Table 6.1: Simplified integrated water budget of the CTL model simulation, and sensitivity tests. Values are in tons of water over 405 minute period with percentage change from control also shown. Humidity is varied in 81 (horizontally homogeneous dry domain) and S2 (more moist). Stability varies in 83 (more unstable) and 84 (more stable). Winds vary in 85 (weaker winds) and S6 (wind profile changed). Hydrometeor contents vary in 87 (50% less) and 88 (50% more). Convective heating is changed in 89 (more heating) and 810 (profile changes shape). Pulsing is neglected in 811. Run Advected mass In 8itu mass Mass Sink Rain sink CTL 1692.06 1246.98 2285.17 511.98 81 1816.64 (+7%) 2365.50 (+90%) 3166.19 (+39%) 495.45 (-3%)
  2. S2 1632.16 (-4%) 1060.51 (.15%) 1978.17 (-13%) 593.77 (+16%) S3 1750.45 (+3%) 2256.36 (+81%) 3039.52 (+33%) 815.69 (+59%) S4 1686.28 (-0%) 936.30 (-33%) 1839.25 (-19%) 595.18 (+16%) S5 1225.24 (-28%) 1200.94 (-4%) 1724.64 (-24%) 452.44 (-12%)
  3. S6 1514.70 (-10%) 1114.94 (-11%) 1904.68 (-17%) 493.47 (-4%)
  4. REFERENCES Anthes, R. A. and T. T. Warner, 1978: The development of mesoscale models suitable for air pollutiOJ and other meteorological studies. Mon. Wea. Rev., 106, 1045-1078.
  5. Arakawa, A., 1966 Computational design for long-term numerical integration of the equa- tions of flu d motion: Two-dimensional incompressible flow, Part I. J. Comput. Phys., 1, : 19-143.
  6. Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.
  7. Atlas, D., K. R. Hardy, R. Wexler and R. J. Boucher, 1963: On the origin of hurricane spiral raincands. Geophys. Int., 3, 123-132.
  8. Atlas, D., R. T ltehira, R. C. Srivastava, W. Marker and R. E. Carbone, 1969: Precipitation-induced mesoscale wind perturbations in the melting layer. Quart. J. Roy. Mtteor. Soc. ,95, 544-560
  9. Augustine, J. A. :md E. J. Zipser, 1987: The use of wind profilers in a mesoscale experi- ment. Bull Amer. Meteor. Soc., 68, 4-17.
  10. Barnes, G. M. and K. Sieckman, 1984: The environment of fast-and slow-moving tropical mesoscale :onvective cloud lines. Mon. Wea. Rev., 112, 1782-1794.
  11. Bartels, D. L. anc R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104-118.
  12. Bergeron, T., 1950: Uber der mechanismus der ausgiebigan neiderschlage. Ber. Deut. Wetterd., 12, 225-232.
  13. Biggerstaff, M. I. and R. A. Houze, Jr., 199130: Kinematic anc precipitation structure of the 10-11 June 1985 squall line. Mon. Wea. Rev., 119. 3034-3065.
  14. Biggerstaff, M. I. and R. A. Houze, Jr., 1991b: Midlevel vorticity structure of the 10-11 June 1985 squall line. Mon. Wea. Rev., 119, 3066-3079.
  15. Bluestein, H. B. and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711- 1732.
  16. Bosart, L. F. and F. Sanders, 1981: The Johnstown flood (I{ July 1977: A long-lived convective system. J. Atmos. Sci., 38, 1616-1642.
  17. Bott, A., 1989: A positive definite advection scheme obtained b:r nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 1006-J 015.
  18. Brandes, E. A., 1990: Evolution and structure of the 6-7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109-127.
  19. Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313-338.
  20. Carbone, R. E., J. W. Conway, N. A. Crook and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Ob ;ervations and implications for mesoscale predictability. Mon. Wea. Rev., 118, ~6-50.
  21. Chen, S. and W. R. Cotton, 1988: The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J. Atmos. Sci., 45, 3897-3910.
  22. Chen, Y.-1. and E. J. Zipser, 1982: The role of horizontal advection of hydrometeors in the water budget of a large squall line system. Preprints, 12th ConI. Severe Local Storms, So.n Antonio, Amer. Meteor. Soc., 355-358.
  23. Cheng, C.-P. ant R. A. Houze, Jr., 1979: The distribution of convective and mesoscale precipitati:>n in GATE radar echo patterns. Mon. Wea. Rev., 107, 1370-1381.
  24. Cheng, C.-P. ani R. A. Houze, Jr., 1981: Inclusion of mesoscale updrafts and downdrafts in compu1 ations of vertical fluxes by ensembles of tropical clouds. J. Atmos. Sci., 38, 1751•1770.
  25. Chong, M. and ). Hauser, 1990: A tropical squall line observed during the COPT 81 experimer t in West Africa. Part III: Heat and moisture budgets. Mon. Wea. Rev., 118, 16~6-1706.
  26. Chong, M., P. A nayenc, G. Scialom and J. Testud, 1987: A tropical squall line observed during th ~COPT 81 experiment in West Africa. Part I: Kinematic structure in- ferred fro n dual Doppler radar data. Mon. Wea. Rev., 115, 670-694.
  27. Churchill, D. D. l.nd R. A. Houze, Jr. 1984: Development and structure of winter monsoon eloud elm ters on 10 December 1978. J. Atmos. Sci., 41, 933-960.
  28. Churchill, D. D and R. A. Houze, Jr., 1991: Effects of radiation and turbulence on the diaba cic heating and water budget of the stratiform region of a tropical cloud cluster. J Atmos. Sci., 48, 903-922.
  29. Clark, T. 1., I! 177: A small-scale dynamic model using a terrain-following coordinate transforn ation. J. Comput. Phys., 24, 186-215.
  30. Clark, T. L., 19 '9: Numerical simulations with a three-dimensional cloud model. Lateral boundar) condition experiments and multi-cellular severe storm simulations. J. Atmos. 5. ci., 36, 2191-2215.
  31. Cotton, W. R., 1972: Numerical simulation of precipitation de relopment in supercooled cumuli-Part II. Mon. Wea. Rev., 100, 764-784.
  32. Cotton, W.R. and R. A. Anthes, 1989: Storm and Cloud Dynar lies. Academic Press, 883 pp. Cotton, W. R., M. A. Stephens, T. Nehrkorn and G. J. Tripoli, 1982: The Colorado State University three dimensional cloud mesoscale model -1 ~82. Part II: an ice phase parameterization. J. Rech. Atmos., 16, No.4, 295-320.
  33. Cox, S. K. and K. T. Griffith, 1979: Estimation of radiation di rergence during Phase III of the GARP Atlantic Tropical Experiment. Part II. An Jysis of Phase III results. J. Atmos. Sci., 36, 586-601.
  34. Dudhia, J., 1990: Numerical study of convection observed du ing the Winter Monsoon Experiment using a mesoscale two-dimensional model. J Atmos. Sci., 46, 3077- 3107.
  35. Dudhia, J., and M.W. Moncrieff, 1989: A three-dimensional m merical study of an Okla- homa squall line containing right-flank supercells. J. Atn os. Sci., 46, 3363-3391.
  36. Dudhia, J., M. W. Moncrieff and D. W.K. So, 1987: The tw< -dimensional dynamics of West African squall lines. Quart. J. Roy. Meteor. Soc., .13, 121-146.
  37. Durran, D. R., M.-J. Yang, D. N. Slinn and R. G. Brown, 19!'3: Toward more accurate wave-permeable boundary conditions. Mon. Wea. Rev., 121, 604•620.
  38. Esbensen, S. K., J.-T. Wang and E. I. Tollerud, 1988: A compl ,site life cycle of nonsquall mesoscale convective systems over the tropical ocean. I art II: Heat and moisture budgets. J. Atmos. Sci., 45, 537-548.
  39. Farley, R. D. and H. D. Orville, 1986: Numerical modeling of hailstorms and hailstone growth. Pc rt I: Preliminary model verification and sensitivity tests. J. Climate Appl. Mett Dr. 25, 2014-2035.
  40. Ferrier, B. S. and R. A. Houze, Jr., 1989: One-dimensional time-dependent modeling of GATE cun .ulonimbus convection. J. Atmos. Sci., 46, 330-352.
  41. Flatau, M. and D E. Stevens, 1987: The effect of horizontal pressure gradients on the mo- mentum tI :tnsport in tropical convective lines. Part I: The results of the convective parameter: ztion. J. Atmos. Sci., 44, 2074-2087.
  42. Fletcher, N. H., ] 962: The Physics of Rainclouds, Cambridge University Press, 386 pp.
  43. Fovell, R. G., 1991: Influence of the Coriolis force on two-dimensional model storms. Mon. Wea. Rev., 119, 606-630.
  44. Fovell, R. G., anI. Y. Ogura, 1988: Numerical simulations of a mid-latitude squall line in two dimen ;ions. J. Atmos. Sci., 45, 3846-3879.
  45. Fovell, R. G., anI. Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell ~torm structure. J. Atmos. Sci., 46, 3144-3176.
  46. Frank, W. M., 1~83: The cumulus parameterization problem. Mon. Wea. Rev., 111, 1859-1871.
  47. Frank, W. M. an i C. Cohen, 1985: Properties of tropical cloud ensembles estimated using a cloud II odel and an observed updraft population. J. Atmos. Sci., 42, 1911- 1928.
  48. Fritsch, J. M. aId C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 172~-1733.
  49. Fritsch, J. M. and R. A. Maddox, 1981a: Convectively driven II esoscale pressure systems aloft. Part I: Observations. J. App/. Meteor., 20, 9-19.
  50. Fritsch, J. M. and R. A. Maddox, 1981b: Convectively driveJl II esoscale pressure systems aloft. Part II: Numerical simulations. J. Appl. Meteor., ~0, 20-26.
  51. Fritsch, J. M., R. J. Kane and C. R. Chelius, 1986: The contJibution of mesoscale con- vective weather systems to the warm-season precipitatio 1 in the United States. J. Climate Appl. Meteor., 25, 1333-1345.
  52. Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405-436.
  53. Gallus, W. A., Jr. and R. H. Johnson, 1991: Heat and moist Ire budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122-146.
  54. Gallus, W. A., Jr. and R. H. Johnson, 1992: The momentum Judget of an intense mid- latitude squall line. J. Atmos. Sci., 49, 422-450.
  55. Gamache, J. F. and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
  56. Gamache, J. F. and R. A. Houze, 1983: Water budget of a IDi !soscale convective system in the tropics. J. Atmos. Sci., 40, 1835-1850.
  57. Gamache, J. F. and R. A. Houze, 1985: Further analysis oj the composite wind and thermodynamic structure of the 12 September GATE sq uallline. Mon. Wea. Rev., 113, 1241-1259.
  58. Gao, K., D.-L. Zhang, M. W. Moncriefi' and H.-R. Cho, 19' 10: Mesoscale momentum budget in a midlatitude squall line: A numerical cas,! study. Mon. Wea. Rev., 118, 1011-1028 tions. Mor.. Wea. Rev., 121, 764-787.
  59. Gunn, K.L.S., an, . J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor. 15, 452-461.
  60. Hall, W. D., 1980 A detailed microphysical model with a two-dimensional dynamic frame- work: moc el description and preliminary results. J. Atmos. Sci., 37, 2486•2507.
  61. Hane, C. E., 197:.: The squall line thunderstorm: Numerical experimentation. J. Atmos. Sci., 30, 1672-1690.
  62. Hauser, D. and P Amayenc, 1986: Retrieval of cloud water and water vapor contents from Doppler r: .dar data in a tropical squall line. J. Atmos. Sci., 43, 823-838.
  63. Hemler, R. S., F, B. Lipps and B. B. Ross, 1991: A simulation of a squall line using a nonhydrm tatic cloud model with a 5-km horizontal grid. Mon. Wea. Rev., 119, 3012-3033
  64. Heymsfield, A. J. and M. R. Hjemfelt, 1984: Processes of hydrometeor development in Oklahomc convective clouds. J. Atmos. Sci., 41, 2811-2835.
  65. Heymsfield, G. ]
  66. Land S. Schotz, 1985: Structure and evolution of a severe squall line over Okla lOrna. Mon. Wea. Rev., 113, 1563-1589.
  67. Hjelmfelt, M. R, H.-Y. Chou, R. D. Farley and D. L. Priegnitz, 1992: Organization and deve] Jpment of a squall line in North Dakota as revealed by Doppler radar and numE rical simulations. Preprints, Fifth Conf. on Mesoscale Processes, Atlanta, Amer. Mt t. Soc., 221-226.
  68. Houghton, H.G , 1968: On precipitation mechanisms and their artificial modification. J. Appl. Meeor. 7, 851-859.
  69. Houze, R. A., Jr., 1977: Structure and dynamics of a tropical s'luaIl-line system observed during GATE. Mon. Wea. Rev., 105, 1540-1567.
  70. Houze, R. A., Jr., 1981: Structure of atmospheric precipitatioll systems-a global survey. Radio Sci. ,16, 671-689.
  71. Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteorol. Soc. Jap. 60, 396-409.
  72. Houze, R. A., Jr. and A. K. Betts, 1981: Convection in GATE, Rev. Geoph. Space Phys., 19, 541-576.
  73. Houze, R. A., Jr. and E. N. Rappaport, 1984: Air motions ani precipitation structure of an early summer squaIlline over the eastern tropical Athntic. J. Atmos. Sci., 41, 553-574.
  74. Houze, R. A., Jr., P. V. Hobbs, P. H. Herzegh and D. B. Parsolls, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Se i., 36, 156-162.
  75. Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff and B. F. Sm ull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscal ~convective systems. Bull. Amer. Meteor. Soc., 70, 608-619.
  76. Houze, R. A., Jr., B. F. Smull and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613->54.
  77. Hsie, E. and R. A Anthes, 1984: Simulations of frontogenesis iJ a moist atmosphere using alternative parameterizations of condensation and pre :ipitation. J. Atmos. Sci., 41, 2701-2716.
  78. Hsie, E.-Y., Anthes, R. A. and D. Keyser, 1984: Numerical sillulation offrontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2581-2594.
  79. Johnson, B. C., 1983: The heat burst of 29 May 1976. Mon. Wea. Rev., 111, 1716-1792.
  80. Johnson, R. H., 1!}82: Vertical motion in near-equatorial winter monsoon convection. J. Meteor. So.:. Jap. 60, 682-690.
  81. Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 1590-1601.
  82. Johnson, R. H. and D. C. Kriete, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110, 1898-1911.
  83. Johnson, R. H. and G. S. Young, 1983: Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci., 40, 2138-2147.
  84. Johnson, R. H. and D. 1. Bartels, 1992: Circulations associated with a mature-to-decaying midlatitud~mesoscale convective system. Part II: Upper-level features. Mon. Wea. Rev., 120, 1301-1320.
  85. Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and air flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444-1472.
  86. Johnson, R. H., S. Chen and J. J. Toth, 1989: Circulations associated with a mature- to-decaying midlatitude mesoscale convective system. Part I: Surface features-Heat bursts ane. mesolow development. Mon. Wea. Rev., 117, 942-959.
  87. Johnson, R. H., W. A. Gallus, Jr. and M. D. Vescio, 1990: Near-tropopause vertical motions within the trailing stratiform regions of squall lines. J. Atmos. Sci., 47, 2200-2210.
  88. Johnston, E. C., 1982: Mesoscale vorticity centers induced by mesoscale convective com- plexes. 9th Conf. on Wea. Forecasting and Analysis, Seattle, Amer. Meteor. Soc., 196-200.
  89. Kalb, M. W., 1985: Results from a limited area mesoscale numerical simulation for 10 April 1979. Mon. Wea. Rev., 113, 1644-1662.
  90. Kalb, M. W., 1987: The role of convective parameterization in the simulation of a Gulf coast precipitation system. Mon. Wea. Rev., 115, 214-234.
  91. Kasahara, A., 1961: A numerical experiment on the development of a tropical cyclone. J. Meteorol., 18, 259-282.
  92. Kessinger, C. J., P. S. Ray and C. E. Hane, 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci., 44, 2840-2864.
  93. Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. Met. Mon. 10, No. 32.
  94. Klemp, J. B. and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.
  95. Klimowski, B. A., 1993: The June 28-29 1989 North Dakota meso-convective system: Initiation and development of rear inflow. Mon. Wea. Rev., (submitted).
  96. Knupp, K. R. and W. R. Cotton, 1987: Internal structure of a small mesoscale convective system. Mon. Wea. Rev., 115, 629-645.
  97. Kreitzburg, C. W. and D. J. Perkey, 1977: Release of potential instability: Part II: The mechanism of convective/mesoscale interaction. J. Atmos. Sci., 34, 1569-1595.
  98. Kuo, Y.-H. and R. A. Anthes, 1984: Mesoscale budgets of heat and moisture in a convective system over the central United States. Mon. Wea. Rev., 112, 1482-1497.
  99. LaFore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521-524.
  100. Leary, C. A., 1980: Temperature and humidity profiles in mesoscale unsaturated down- drafts. J. Atmos. Sci., 37, 1005-1012.
  101. Leary, C. A., and R. A. Houze, Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669-679.
  102. Leary, C. A., and E. N. Rappaport, 1987: The life cycle and internal structure of a mesoscale convective complex. Mon. Wea. Rev., 115, 1503-1527.
  103. LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 1815-1834.
  104. LeMone, M. A., G. M. Barnes and E. J. Zipser, 1984: Momentum flux by lines of cumu- lonimbus over the tropical oceans. J. Atmos. Sci., 41, 1914-1932.
  105. Lewis, J. M, Y. Ogura, and 1. Gidel, 1974: Large-scale influences upon the generation of a mesoscale disturbance. Mon. Wea. Rev., 102, 545-560.
  106. Lin, C. A. and R. E. Stewart, 1986: Mesoscale circulations initiated by melting snow. J. Geophys. Res., 91, 13299-13302.
  107. Lin, Y.-L., R.D. Farley and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
  108. Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 79, 2185-2197.
  109. Lord, S. J., H. E. Willoughby and J. M. Piotrowicz, 1984: Role of parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 2836-2848.
  110. Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374-1387.
  111. Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.
  112. Matejka, T. and T. J. Schuur, 1991: The relationship between vertical air motions and the precipitation band in the stratiform region of a squall line. Preprints, 25th International ConI. on Radar Meteor., Paris, Amer. Meteor. Soc., 501-504.
  113. McAnelly, R. 1. and W. R. Cotton, 1986: Meso-,B-scale characteristics of meso-a-scale convective complexes. Mon. Wea. Rev., 114, 1740-1770.
  114. McCumber, M., W.-K. Tao, J. Simpson, R. Penc and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor. 30, 985-1004.
  115. Menard, R. D., D. L. Sims and J. M. Fritsch, 1988: Case example of the effect of a wake low on subsequent convective events. Preprints, 15th ConI. on Severe Local Storms, Baltimore, Amer. Meteor. Soc., 225-228.
  116. Molinari, J. and M. Dudek, 1986: Implicit versus explicit convective heating in numerical weather prediction models. Mon. Wea. Rev., 114, 1822-1831.
  117. Moncrieff, M. W., 1978: The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteorol. Soc., 104, 543-567.
  118. Moncrieff, M. W., 1981: A theory of organized steady convection and its transport prop- erties. Quart. J. Roy. Meteorol. Soc., 107, 29-50.
  119. Moncrieff, M. W. and Miller, M. J., 1976: The dynamics and simulation of tropical cu- mulonimbus and squall lines. Quart. J. Roy. Meteorol. Soc., 102, 373-394.
  120. Myers, M. P., P. J. DeMott and W. R. Cotton, 1992: New primary ice-nucleation param- eterization in an explicit cloud model. J. Appl. Meteor. 31, 708-721.
  121. Newton, C. W., 1950: Structure and mechanisms of the prefrontal squall line. J. Meteor. 7, 210-223.
  122. Newton, C. W., 1966: Circulations in large sheared cumulonimbus. Tellus, 18, 699-712.
  123. Newton, C. W. and J. C. Fankhauser, 1964: On the movements of convective storms, with emphasis on size discrimination in relation to water-budget requirements. J. Appl. Meteor. 3, 651-668.
  124. Nicholls, M.E., 1987: A comparison of the results of a two dimensional numerical simula- tion of a tropical squall line with observations. Mon. Wea. Rev., 115, 3055-3077.
  125. Nicholls, M.E. and M. J. Weissbluth, 1988: A comparison of two-dimensional and quasi- three dimensional simulations of a tropical squall line. Mon. Wea. Rev., 116, 2437-2452.
  126. Nicholls, M.E., R. H. Johnson and W. R. Cotton, 1988: The sensitivity of two-dimensional simulations of tropical squall lines to environmental profiles. J. Atmos. Sci., 45, 3625-3649.
  127. Nickerson, E. C., E. R. Richard, R. Rosset and D. R. Smith, 1986: The numerical sim- ulation of douds, rain, and airflow over the Vosges and Black Forest Mountains: A meso-beta model with parameterized microphysics. Mon. Wea. Rev., 114, 398-414.
  128. Ninomiya, K., 1971: Mesoscale modification of synoptical situations from thunderstorm development as revealed by ATS III and aerological data. J. Appl. Meteor. 10, 1103-1121.
  129. Ogura, Y. and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173-179.
  130. Ogura, Y. and T. Takahashi, 1973: The development of warm rain in a cumulus model. J. Atmos. Sci., 30, 262-277.
  131. Ogura, Y. and M.-T. Liou, 1980: The structure of a midlatitude squall line: a case study. J. Atmos. Sci., 37, 553-567.
  132. Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527-530.
  133. Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Com- put. Phys., 21, 251-269.
  134. Orlanski, I. and B. B. Ross, 1973: Numerical simulation of the generation and breaking of internal gravity waves. J. Geophys. Res., 78, 8808-8826.
  135. Orlanski, I. and B. B. Ross, 1977: The circulation associated with a cold front. Part I: Dry case. J. Atmos. Sci., 33, 1619-1633.
  136. Orville, H. D. and F. J. Kopp, 1977: Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596-1618.
  137. Pedgley, D. E., 1962: A meso-synoptic analysis of the thunderstorms on 28 August 1958. Brit. Meteor. Off., Geophys. Mem. 106, 74 pp.
  138. Perkey, D. J. and R. A. Maddox, 1985: A numerical investigation of a mesoscale convective system. Mon. Wea. Rev., 113, 553-566.
  139. Pointin, Y., 1985: Numerical simulation of organized convection. Part I: Model description and preliminary comparisons with squall line observations. J. Atmos. Sci., 42, 155-172.
  140. Potter, B. E., 1991: Improvements to a commonly used cloud microphysical bulk param- eterization. J. Appl. Meteor. 30, 1040-1042.
  141. Proctor, F.R., 1988: Numerical simulations of an isolated microburst. Part II: Dynamics and structure. J. Atmos. Sci., 45, 3137-3160.
  142. Rasmussen, E. N. and S. A. Rutledge, 1993: Evolution of quasi-two-dimensional squall lines. Part I: Kinematic and reflectivity structure. J. Atmos. Sci., 50, 2584-2606.
  143. Raymond, W. H. and H.-L. Kuo, 1981: A radiation boundary condition for multi- dimensional flows. In: Kuo, H.-L., W. H. Raymond and K. L. Seitter, 1981: Theoret- ical Studies of Squall-line Type and Tornado-like Disturbances, AFGL-TR-82-0005, 65-96 [Available through NTIS and DTIC, AD-A113 086/3.]
  144. Redelsberger J. L. and J. P. LaFore, 1988: A three-dimensional simulation of a tropi- cal squall line: Convective organization and thermodynamic vertical transport. J. Atmos. Sci., 45, 1334-1356.
  145. Rickenbach, T. M., 1990: Precipitation processes and water budget study of the 10-11 June 1985 mesoscale convective system. M. S. thesis, Colorado State University, 180 pp. (Available from Atmos. Sci. Dept., Colorado State University, Ft. Collins, CO, 80523.]
  146. Riehl, H. and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica 6, 503-538.
  147. Rosenthal, S. L., 1978: Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales. I: Model description and preliminary results. J. Atmos. Sci., 35, 258-271.
  148. Rosenthal, S. L., 1979: The sensitivity of simulated hurricane development to cumulus parameterization details. Mon. Wea. Rev., 107, 193-197.
  149. Ross, B. B. and I. Orlanski, 1982: The evolution of an observed cold front. Part I: Nu- merical simulation. J. Atmos. Sci., 39, 296-327.
  150. Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406-426.
  151. Roux, F., J. Testud, M. Payen and B. Pinty, 1984: West African squall line thermodynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104-3120.
  152. Rotunno, R. and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561.
  153. Rutunno, R., J. B. Klemp and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463-485.
  154. Rutledge, S. A., 1986: A diagnostic numerical study of the stratiform region associated with a tropical squall line. J. Atmos. Sci., 43, 1337-1358.
  155. Rutledge, S. A. and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the "Seeder-Feeder" process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185-1206.
  156. Rutledge, S. A. and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949-2972.
  157. Rutledge, S. A. and R. A. Houze, Jr. 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmo8. Sci., 44, 2640-2656.
  158. Rutledge, S. A. and D. R. MacGorman, 1988: Cloud-to-ground lightning activity in the lO- II June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRE-STORM project. Mon. Wea. Rev., 116, 1393-1408.
  159. Rutledge, S. A., R. A. Houze, Jr., M. I. Biggerstaff, and T. Matejka, 1988: The Oklahoma- Kansas mesoscale convective system of 10-11 June 1985: precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev., 116, 1409-1430.
  160. Sanders, F. and R. J. Paine, 1975: The structure and thermodynamics of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci., 32, 1563-1579.
  161. Sanders, F. and K. A. Emanuel, 1977: The momentum budget and temporal evolution of a mesoscale convective system. J. Atmos. Sci., 34, 322-330.
  162. Schmidt, J. M. and W. R. Cotton, 1990: Interactions between upper and lower atmospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 1205- 1222.
  163. Schubert, W. H., S. R. Fulton and R. F. A. Hertenstein, 1989: Balanced atmospheric response to squall lines. J. Atmos. Sci., 46, 2478-2483.
  164. Scott, B. C. and P. V. Hobbs, 1977: A theoretical study of the evolution of mixed phase cumulus clouds. J. Atmos. Sci., 34, 812-826.
  165. Seitter, K. 1., and H.-1. Kuo, 1983: The dynamic structure of squall-line type thunder- storms. J. Atmos. Sci., 40, 2831-2854.
  166. Smull, B. F. and R. A. Houze, 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117-133.
  167. Smull, B. F. and R. A. Houze, 1981a: Dual-Doppler radar analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 43, 356-311.
  168. Smull, B. F. and R. A. Houze, 1981b: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869-2889.
  169. Smull, B. F. and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale con- vective complex. Mon. Wea. Rev., 121, 103-132.
  170. Sommeria, G. and J. Testud, 1984: COPT 81: a field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 4-10.
  171. Soong, S. T. and Y. Ogura, 1980: Response of trade-wind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035-2050.
  172. Srivastava, R. C., 1981: A model of intense downdrafts driven by the melting and evapo- ration of precipitation. J. Atmos. Sci., 44, 1152-1113.
  173. Srivastava, R. C., T. J. Matejka, and T. J. Lorello, 1986: Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci., 43, 356-311.
  174. Stensrud, D. J., R. A. Maddox and C. 1. Ziegler, 1991: A sublimation-initiated mesoscale downdraft and its relation to the wind field below a precipitating anvil cloud. Mon. Wea. Rev., 119, 2124-2139.
  175. Stephens, G. 1., 1983: The influence of radiative transfer on the mass and heat budgets of ice crystals falling in the atmosphere. J. Atmos. Sci., 40, 1129-1139.
  176. Stewart, R. E., J. D. Marwitz, J. C. Pace and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform cloud. J. Atmos. Sci., 41, 3221-3231.
  177. Stumpf, G. J., R. H. Johnson and B. F. Smull, 1991: The wake low in a midlatitude mesoscale convective system having complex convective organization. Mon. Wea. Rev., 119, 134-158.
  178. Szeto, K. K., C. A. Lin and R. E. Stewart, 1988a: Mesoscale circulations forced by melting snow. Part I: Basic simulations and dynamics. J. Atmos. Sci., 45, 1629-1641.
  179. Szeto, K. K., R. E. Stewart and C. A. Lin, 1988b: Mesoscale circulations forced by melting snow. Part II: Application to meteorological features. J. Atmos. Sci., 45, 1642- 1650.
  180. Takahashi, T., 1976: Hail in an axisymmetric cloud model. J. Atmos. Sci., 33, 1579- 1601.
  181. Takeda, T., 1965: The downdraft in convective showercloud under the vertical wind shear and its significance for the maintenance of convective systems. J. Meteor. Soc. Jap 43, 302-309.
  182. Takeda, T., 1971: Numerical simulation of a precipitating cloud: The formation of a "long-lasting" cloud. J. Atmos. Sci., 28, 350-376.
  183. Tao, W.-K. and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46, 177-202.
  184. Tao, W.-K. J. Simpson and S.-T. Soong, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119, 2699-2723.
  185. Tao, W.-K. J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou and K. Pickering, 1993: Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparison and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673-690.
  186. Thorpe, A. J., M. J. Miller and M. W. Moncrieff, 1982: Two-dimensional convection in nonconstant shear: a model of midlatitude squall lines. Quart. J. Roy. Meteorol. Soc., ,108, 739-762.
  187. Tripoli, G. J. and W. R. Cotton, 1978: Cumulus convection in shear flow -three dimen- sional numerical experiments. J. Atmos. Sci., 35, 1503-1521.
  188. Tripoli, G. J. and W. R. Cotton, 1982: The Colorado State University three-dimensional cloud/ mesoscale model -1982. Part I: General theoretical framework and sensitiv- ity experiments. J. de. Rech. Atmos., 16, 185-200.
  189. Verlinde, J. and W. R. Cotton, 1990: A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev., 118, 993-1010.
  190. Webster, P. J. and G. 1. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci., 37, 1521-1541.
  191. Weisman, M. 1., 1992: The role of convectively generated rear-inflow jets in the evolution oflong-lived meso-convective systems. J. Atmos. Sci., 49, 1826-1847.
  192. Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated con- vective storms on wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
  193. Weisman, M. 1., J. B. Klemp and R. Rotunno, 1988: Structure and evolution of numeri- cally simulated squall lines. J. Atmas. Sci., 45, 1990-2013.
  194. Willis, P. T., 1984: Functional fits to some observed drop size distributions and parame- terization of rain. J. Atmos. Sci., 41, 1648-1661.
  195. Willis, P. T. and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 2008-2025.
  196. Willoughby, H. E., H. Jin, S. J. Lord and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 1169-1186.
  197. Yamasaki, M., 1977: A preliminary experiment of the tropical cyclone without parame- terizing the effects of cumulus convection. J. Meteorol. Soc. Jap., 55, 11-30.
  198. Yoshizaki, M., 1986: Numerical simulations of tropical squall-line clusters: Two- dimensional model. J. Meteorol. Soc. Jpn. 64, 469-491.
  199. Zhang, D. -1., 1992: The formation of a cooling-induced mesovortex in the trailing strat- iform region of a midlatitude squall line. Mon. Wea. Rev., 120, 2763-2785.
  200. Zhang, D.-1. and J.M.Fritsch, 1986: Numerical simulation of the meso,B scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43, 1913-1943
  201. Zhang, D.-L. and J .M.Fritsch, 1987: Numerical simulation of t1:l.e mesoj3 scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm core vortex and the mesoscale convective complex. J. Atmos. Sci., 44, 2593-2612.
  202. Zhang, D.-1. and J. M. Fritsch, 1988a: Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems. J. Atmos. Sci., 45, 261-293.
  203. Zhang, D.-L. and J. M. Fritsch, 1988b: A numerical investigation of a convectively gener- ated, inertially stable, extratropical warm-core mesovortex over land. Part I: Struc- ture and evolution. Mon. Wea. Rev., 116, 2660-2687.
  204. Zhang, D.-L. and K. Gao, 1989: Numerical simulation of an intense squall line during lO- II June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117, 2067-2094.
  205. Zhang, D. -L. and H.-R. Cho, 1992: The development of negative moist potential vorticity in the stratiform region of a simulated squall line. Mon. Wea. Rev., 120, 1322- 1341.
  206. Zhang, D.-L., E.-Y. Hsie and M. W. Moncrieff, 1988: A comparison of explicit and im- plicit predictions of convective and stratiform precipitating weather systems with a meso,B-scale numerical model. Quart. J. Roy. Meteorol. Soc., 114, 31-60.
  207. Zhang, D.-1., K. Gao and D. B. Parsons, 1989: Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM. Part I: Model verification. Mon. Wea. Rev., 117, 960-994.
  208. Ziegler, C. 1., 1985: Retrieval of thermal and microphysical variables in observed convec- tive storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487-1509.
  209. Ziegler, C. 1., P. S. Ray and D. R. MacGorman, 1986: Relations of kinematics, micro- physics and electrification in an isolated mountain thunderstorm. J. Atmos. Sci., 43, 2098-2114.
  210. Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the struc- ture and rapid decay of an equitorial disturbance. J. Appl. Meteor. 8, 799-814.
  211. Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 1568-1589.