Plasticity in the Mechanical Behaviour of Cardiovascular Stents during Stent Preparation (Crimping) and Placement (Expansion) (original) (raw)

Key Engineering Materials, 2007

Abstract

In Western countries, cardiovascular disease is the most common cause of death, often related to atherosclerosis which can lead to a narrowing of the arteries. To restore perfusion of downstream tissues, an intravascular stent (i.e. a small tube-like structure) can be deployed in the obstructed vessel. The vast majority of stents are balloon expandable and crimped on a folded balloon to obtain a low profile for deliverability and lesion access. Several studies have exploited the finite element method to gain insight in their mechanical behaviour or to study the vascular reaction to stent deployment. However, to date – to the best of our knowledge – none of them include the balloon itself in its actual folded shape. Furthermore, literature on the effect of the crimping process on the expansion behaviour of the stent is even scarcer. Our numerical results - accounting for the presence of the balloon in its actual folded shape - correspond very well with data provided by the manufacturer and consequently our approach could be the basis for new realistic computational models of angioplasty procedures. The plastic deformation, prior to the stent expansion and induced by the crimping procedure, has a minor influence on the overall expansion behaviour of the stent but nevertheless influences the maximum von Mises stress and nominal strain. The maximum von Mises stress drops from 440 N/mm² to 426 N/mm² and the maximum nominal strain value lowers from 0.23 to 0.22 at the end of the expansion phase when neglecting the presence of the residual stresses. Depending on the context in which to use the developed mathematical models, the crimping phase can be discarded from the simulations in order to speed up the analyses.

Pascal Verdonck hasn't uploaded this paper.

Let Pascal know you want this paper to be uploaded.

Ask for this paper to be uploaded.