Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor (original) (raw)
Related papers
The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen
Nature Communications
Parasitic plants of the genus Cuscuta penetrate shoots of host plants with haustoria and build a connection to the host vasculature to exhaust water, solutes and carbohydrates. Such infections usually stay unrecognized by the host and lead to harmful host plant damage. Here, we show a molecular mechanism of how plants can sense parasitic Cuscuta. We isolated an 11 kDa protein of the parasite cell wall and identified it as a glycine-rich protein (GRP). This GRP, as well as its minimal peptide epitope Crip21, serve as a pathogen-associated molecular pattern and specifically bind and activate a membrane-bound immune receptor of tomato, the Cuscuta Receptor 1 (CuRe1), leading to defense responses in resistant hosts. These findings provide the initial steps to understand the resistance mechanisms against parasitic plants and further offer great potential for protecting crops by engineering resistance against parasitic plants.
Parasitism byCuscuta pentagonasequentially induces JA and SA defence pathways in tomato
Plant Cell and Environment, 2010
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence-related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10-day-old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60-fold increase in JA, a 30-fold increase in SA and a hypersensitive-like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10-day-old hosts, but both did in 20-day-old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [ jasmonic acid-insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivoreand pathogen-induced responses.
Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato
Plant, Cell & Environment, 2010
ABSTRACTWhile plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence‐related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10‐day‐old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60‐fold increase in JA, a 30‐fold increase in SA and a hypersensitive‐like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10‐day‐old hosts, but both did in 20‐day‐old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid‐insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indica...
Frontiers in Plant Science
Parasitic weeds cause billions of dollars in agricultural losses each year worldwide. Cuscuta campestris (C. campestris), one of the most widespread and destructive parasitic plants in the United States, severely reduces yield in tomato plants. Reducing the spread of parasitic weeds requires understanding the interaction between parasites and hosts. Several studies have identified factors needed for parasitic plant germination and haustorium induction, and genes involved in host defense responses. However, knowledge of the mechanisms underlying the interactions between host and parasitic plants, specifically at the interface between the two organisms, is relatively limited. A detailed investigation of the crosstalk between the host and parasite at the tissue-specific level would enable development of effective parasite control strategies. To focus on the haustorial interface, we used laser-capture microdissection (LCM) with RNA-seq on early, intermediate and mature haustorial stages...
Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens
2015
Maximizing food production with minimal negative effects on the environment remains a long-term challenge for sustainable food production. Microbial pathogens cause devastating diseases, minimizing crop losses by controlling plant diseases can contribute significantly to this goal. All plants possess an innate immune system that is activated after recognition of microbial-derived molecules. The fungal protein Eix induces defense responses in tomato and tobacco. Plants recognize Eix through a leucine-rich-repeat receptor- like-protein (LRR-RLP) termed LeEix. Despite the knowledge obtained from studies on tomato, relatively little is known about signaling initiated by RLP-type immune receptors. The focus of this grant proposal is to generate a foundational understanding of how the tomato xylanase receptor LeEix2 signals to confer defense responses. LeEix2 recognition results in pattern triggered immunity (PTI). The grant has two main aims: (1) Isolate the LeEix2 protein complex in an ...
BMC biology, 2016
Plants deploy immune receptors to detect pathogen-derived molecules and initiate defense responses. Intracellular plant immune receptors called nucleotide-binding leucine-rich repeat (NLR) proteins contain a central nucleotide-binding (NB) domain followed by a series of leucine-rich repeats (LRRs), and are key initiators of plant defense responses. However, recent studies demonstrated that NLRs with non-canonical domain architectures play an important role in plant immunity. These composite immune receptors are thought to arise from fusions between NLRs and additional domains that serve as "baits" for the pathogen-derived effector proteins, thus enabling pathogen recognition. Several names have been proposed to describe these proteins, including "integrated decoys" and "integrated sensors". We adopt and argue for "integrated domains" or NLR-IDs, which describes the product of the fusion without assigning a universal mode of action. We have sca...
A molecular roadmap to the plant immune system
Journal of Biological Chemistry, 2020
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses, and the measures used to control disease (e.g. application of pesticides), have significant agricultural, economic and societal impacts. Therefore, it is essential we understand the molecular mechanisms of the plant immune system, a system which allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of the plant immunity...
Proceedings of the National Academy of Sciences, 2011
Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as "helper NB-LRRs" to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop-dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals.
Molecular Plant-Microbe Interactions
The hemibiotrophic pathogen Colletotrichum orbiculare preferentially expresses a necrosis and ethylene-inducing peptide 1 (Nep1)-like protein named NLP1 during the switch to necrotrophy. Here, we report that the constitutive expression of NLP1 in C. orbiculare blocks pathogen infection in multiple Cucurbitaceae cultivars via their enhanced defense responses. NLP1 has a cytotoxic activity that induces cell death in Nicotiana benthamiana. However, C. orbiculare transgenic lines constitutively expressing a mutant NLP1 lacking the cytotoxic activity still failed to infect cucumber, indicating no clear relationship between cytotoxic activity and the NLP1-dependent enhanced defense. NLP1 also possesses the microbe-associated molecular pattern (MAMP) sequence called nlp24, recognized by Arabidopsis thaliana at its central region, similar to NLPs of other pathogens. Surprisingly, inappropriate expression of a mutant NLP1 lacking the MAMP signature is also effective for blocking pathogen inf...