On the stability of nonconservative continuous systems under kinematic constraints (original) (raw)

Abstract

In this paper we deal with recent results on divergence kinematic structural stability (ki.s.s.) resulting from discrete nonconservative finite systems. We apply them to continuous nonconservative systems which are shown in the well-known Beck column. When the column is constrained by an appropriate additional kinematic constraint, a certain value of the follower force may destabilize the system by divergence. We calculate its minimal value, as well as the optimal constraint. The analysis is carried out in the general framework of inÞnite dimensional Hilbert spaces and non-self-adjoint operators.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (45)

  1. E. Absi and J. Lerbet, Instability of elastic bodies, Mech. Res. Commun. 31, 39-44 (2004).
  2. G. Allaire, Analyse Numérique et Optimisation: Une Introduction à la Modélisation Mathématique (Editions Ecole Polytechnique, 2005).
  3. M. Beck, Die Knicklast des einseitig eingespannten tangential gedrückten Stabes, Z. Angew. Math. Phys. 3, 225-228 (1952).
  4. V. V. Bolotin, Non-Conservative Problems of the Theory of Elastic Stability (Pergamon Press, 1963).
  5. J. Carr and Z. M. Malhardeen, Beck's problem, SIAM J. Appl. Math. 37(2), 261-262 (1979).
  6. N. Challamel, F. Nicot, J. Lerbet, and F. Darve, On the stability of non-conservative elastic systems under mixed perturbations, EJECE 13(3), 347-367 (2009), https://doi.org/10.3166/ejece.13.
  7. N. Challamel, F. Nicot, J. Lerbet, and F. Darve, Stability of non-conservative elastic structures under additional kinematics constraints, Engineering Structures 32, 3086-3092 (2010), pp. 67-84.
  8. E. de Langre and O. Doaré, Edge flutter of long beam under follower loads, JoMMS 10(3), (2015), https://doi.org/ 10.2140/jomms.2015.10.283 msp.
  9. O. Doaré, Dissipation effect on local and global stability of fluid-conveying pipes, J. Sound Vib. 329(1), 72-83 (2010).
  10. O. Doaré, Dissipation effect on local and global fluid-elastic instabilities, in: Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations, edited by O. N. Kirillov and D. E. Pelinovsky (Wiley, Hoboken, NJ, 2014), pp. 67-84.
  11. O. Doaré and E. de Langre, Local and global instability of fluid-conveying pipes on elastic foundations, J. Fluid. Struct. 16(1), 1-14 (2002).
  12. I. Elishakoff, Controversy associated with the so-called "follower forces": critical overview, Appl. Mech. Rev. 58(1-6), 117-142 (2005).
  13. G. Herrmann, Dynamics and Stability of Mechanical Systems with Follower Forces, Monography (Report NASA CR-1782, 1971), p. 234.
  14. R. Hill, Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids 7, 209-225 (1959).
  15. R. Jurisits and A. Steindl, Mode interactions and resonances of an elastic fluid-conveying tube, PAMM 11(1), 323-324 (2011).
  16. W. T. Koiter, Unrealistic follower forces, J. Sound Vib. 194, 636-638 (1996).
  17. O. N. Kirillov and F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Withney's umbrella? Z. Angew. Math. Mech. 90(6), 462-488 (2010).
  18. O. N. Kirillov, Nonconservative Stability Problems of Modern Physics (de Gruyter, Berlin, Boston, 2013).
  19. R. J. Knops and L. E. Payne, Stability in linear elasticity, Int. J. Solids Struct. 4(12), 1233-1242 (1968).
  20. L. P. Lebedev, I. I. Vorovitch, and G. M. L. Gladwell, Functional Analysis. Application in Mechanics and Inverse Problems (Kluwer Academic Publishers, Dordrecht etc., 2003).
  21. J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, F. Prunier, and F. Darve, P-positive definite matrices and stability of nonconservative systems, Z. Angew. Math. Mech. 92(5), 409-422 (2012).
  22. J. Lerbet, O. Kirillov, M. Al-Dowaji, F. Nicot, N. Challamel, and F. Darve, Additional constraints may soften a non-conservative structural system: buckling and vibration analysis, Int. J. Solids Struct. 50(2), 636-370 (2013).
  23. F. Nicot, J. Lerbet, and F. Darve, Flutter and divergence instabilities of some constrained twodegree-of-freedom systems, Journal of Engineering Mechanics 140(1), 47-52 (2014).
  24. O. N. Kirillov, N. Challamel, F. Darve, J. Lerbet, and F. Nicot, Singular divergence instability thresholds of kinematically constrained circulatory systems, Phys. Lett. A 378(3), 147-152 (2014).
  25. J. Lerbet, M. Aldowaji, N. Challamel, O. N. Kirillov, F. Nicot, and F. Darve, Geometric degree of nonconservativity, Math. and Mech. of Complex Systems 2(2), 123-139 (2014), https://doi.org/10.2140/memocs.2014.2.123.
  26. J. Lerbet, N. Challamel, F. Nicot, and F. Darve, Variational Formulation of Divergence Stability for constrained systems, Appl. Math. Modell. (2015), https://doi.org/10.1016/j.apm.2015.02.052.
  27. J. Lerbet, G. Hello, N. Challamel, F. Nicot, and F. Darve, 3-Dimensional flutter kinematic structural stability nonlinear analysis: Real world applications (2016), https://doi.org/10.1016/j.nonrwa.2015.10.006.
  28. J. Lerbet, N. Challamel, F. Nicot, and F. Darve, Geometric Degree of Nonconservativity: set of solutions for the linear case and extension to the differentiable non linear case, Appl. Math. Modell. (2016), https://doi.org/10.1016/j.apm.2016.01.030.
  29. J. Lerbet, N. Challamel, F. Nicot, and F. Darve, Kinematical Structural Stability, Discrete and Continuous Dynamical Systems - Series S (DCDS-S) of American Institute of Mathematical Sciences (AIMS), DCDS-S 9-2 June 2016 special issue (2016).
  30. R. Mennicken and M. Möller, Non-Self-Adjoint Boundary Eigenvalue Problems, North-Holland Mathematics Studies 192 (Elsevier, 2003).
  31. A. A. Movchan, The direct method of Lyapunov in stability problems of elastic systems, PMM-J. Appl. Math. Mech. 23(3), 686-700 (1959).
  32. A. A. Movchan, Stability of processes with respect to two metrics, PMM-J. Appl. Math. Mech. 24(6), 1506-1524 (1960).
  33. N. N. Moiseyev and V. V. Rumyantsev, Dynamic Stability of Bodies Containing Fluid (Springer, 1968).
  34. S. Nemat-Nasser and G. Herrmann, Adjoint systems in nonconservative problems of elastic stability, AIAA J. 4, 2221-2222 (1966).
  35. M. P. Païdoussis, Fluid-Structure Interactions: Slender Structures and Axial Flows I (Academic Press, San Diego, CA, 1998).
  36. M. P. Païdoussis, Fluid-Structure Interactions: Slender Structures and Axial Flows II (Elsevier, San Diego, CA, 2003).
  37. S. N. Prasad and G. Herrmann, The usefulness of adjoint systems in solving nonconservative stability problems of elastic continua, Int. J. Solids Struct. 5(7), 727-735 (1969).
  38. A. Steindl and H. Troger, One and two-parameter bifurcations to divergence and flutter in the three-dimensional motions of a fluid conveying viscoelastic tube with D4-symmetry, Advances in Nonlinear Dynamics: Methods and Applications 8, 161-178 (1995).
  39. A. Steindl and H. Troger, Nonlinear three-dimensional oscillations of elastically constrained fluid conveying viscoelastic tubes with perfect and broken O(2)-symmetry, Nonlinear Dyn. 7(2), 165-193 (1995).
  40. A. Steindl and H. Troger, Heteroclinic cycles in the three-dimensional postbifurcation motion of O(2)-symmetric fluid conveying tubes, Appl. Math. Comput. 78(2-3), 269-277 (1996).
  41. A. Steindl, Hopf-Takens-Bogdanov interaction for a fluid-conveying tube, PAMM 16(1), 293-294 (2016).
  42. J. M. T. Thompson, 'Paradoxical' mechanics under fluid flow, Nature 296(5853), 135-137 (1982).
  43. H. Troger and A. Steindl, Nonlinear Stability and Bifurcation Theory (Springer, 1991).
  44. J. Weidmann, Linear Operators in Hilbert Spaces (Springer-Verlag, 1980).
  45. H. Ziegler, Principles of Structural Stability (Blaisdell Pub. Company, 1968).