After the rubber boom: good news and bad news for biodiversity in Xishuangbanna, Yunnan, China (original) (raw)
Related papers
Ecological Modeling, 2017
Rapid plantation expansion and its associated impacts on habitat fragmentation and landscape connec-tivity in many tropical areas has raised increasing concerns as to its impact on Ecosystem Services (ES). Using the InVEST modelling suite, we evaluated critical ES dynamics in four zones of varying plantation expansion intensity (high, medium, low and no plantation expansion) in Xishuangbanna prefecture in Southwest China from 1976 to 2012. Based on these results, we also exmained the relationship between ES and landscape pattern and connectivity derived by the " probability of connectivity " model. We found that during the study period, plantation area increased more than 20 times in Xishuangbanna prefecture as a whole, while broad-leaved forest cover decreased by nearly 30%. The impact of plantation on ES was substantial at both the regional and local scale. Carbon stocks and water yield services decreased by 15.48% and 10.85%, respectively, from 1976 to 2012 throughout the region as a whole. Within the selected study zones, carbon stock and water yeild decreased by 45% and 32%, respectively, from the no plantation to the high plantation zones in 2012 specifically. Plantation expansion has also resulted in a decrease in natural forest cover and a high level of habitat fragmentation. Landscape connectivity decreased by a range of 54.64–95.58% throughout the study area, with 134.58 km 2 of forest patches of high importance reduced to medium or low importance during the study period. Correlation analysis showed that carbon storage was more closely correlated to landscape connectivity than forest habitat percentage, large patch index or cohesion index. Together, these results highlight that habitat configuration with a high connectivity level between fragmented patches is important for maintaining critical Ecosystem Services.
The study of the past, present, and future state and dynamics of the tropical natural forest cover (NFC) might help to better understand the pattern of deforestation and fragmentation as well as the influence of social and natural processes. The obtained information will support the development of effective conservation policies and strategies. In the present study, we used historical data of the road network, topography, and climatic productivity to reconstruct NFC maps of Hainan Island, China, from the 1950s to the 2010s, using the random forest algorithm. We investigated the spatial and temporal patterns of NFC change from the 1950s to the 2010s and found that it was highly dynamic in both space and time. Our data showed that grid cells with low NFC were more vulnerable to NFC decrease, suggesting that conservation actions regarding natural forests need to focus on regions with low NFC and high ecological value. We also identified the hot spots of NFC change, which provides insights into the dynamic changes of natural forests over time.
Effectiveness of China's protected areas in reducing deforestation
Environmental Science and Pollution Research, 2019
Protected areas (PAs) are considered a cornerstone of biodiversity conservation, and the number and extent of PAs are expanding rapidly worldwide. While designating more land as PAs is important, concerns about the degree to which existing PAs are effective in meeting conservation goals are growing. Unfortunately, conservation effectiveness of PAs and its underlying determinants are often unclear across large spatial scales. Using PAs in China as an example, we evaluated the effectiveness of 472 PAs established before 2000 in reducing deforestation between 2000 and 2015. Our results show that the majority (71%) of the PAs were effective in reducing deforestation. Without their establishment, deforestation within the PAs would have increased by about 50% (581 km 2), with about 1271 megaton of carbon per year not being sequestered. We also found some attributes of PAs, including surrounding deforestation level, roughness of terrain, and travel time to the nearest city, are significantly related to their effectiveness in reducing deforestation. Our findings highlight the need of systematically evaluating the effectiveness of PAs and incorporating this effectiveness into conservation planning and management to more fully realize the goals of PAs not only in China but also around the world.