Identification of immunodominant epitopes on nucleocapsid and spike proteins of the SARS-CoV-2 in Iranian COVID-19 patients (original) (raw)

Utility of in silico-identified-peptides in spike-S1 domain and nucleocapsid of SARS-CoV-2 for antibody detection in COVID-19 patients and antibody production

Scientific Reports

SARS-CoV-2 contains four structural proteins, two of which, the spike and nucleocapsid, are commonly used for the standardization of novel methods for antibody detection; however, some limitations in their use have been observed due to the homology of this virus with other phylogenetically-related viruses. We performed in silico analysis to search for novel immunogenic and antigenic peptides. A total of twenty-five peptides were preliminarily selected, located in the 3D structure of both proteins. Finally, eight peptides were selected: one located in the N protein and seven in the S1 domain of the spike protein. Additionally, the localization of selected peptides in 2D structures and possible changes in the sequences of these peptides in SARS-CoV-2 variants of concern were analyzed. All peptides were synthetized in MAP8 format, and recombinant S (trimer and RBD) and N proteins were used as antigens to search for antibodies in serum samples derived from COVID-19 patients, and for ant...

Antibody detection of SARS-CoV spike and nucleocapsid protein

Biochemical and Biophysical Research Communications, 2004

Early detection and identification of SARS-CoV-infected patients and actions to prevent transmission are absolutely critical to prevent another SARS outbreak. Antibodies that specifically recognize the SARS-CoV spike and nucleocapsid proteins may provide a rapid screening method to allow accurate identification and isolation of patients with the virus early in their infection. For this reason, we raised peptide-induced polyclonal antibodies against SARS-CoV spike protein and polyclonal antibodies against SARS-CoV nucleocapsid protein using 6Â His nucleocapsid recombinant protein. Western blot analysis and immunofluorescent staining showed that these antibodies specifically recognized SARS-CoV.

Sensitive and specific immunohistochemistry protocols for detection of SARS-CoV-2 nucleocapsid and spike proteins in formalin-fixed, paraffin-embedded COVID-19 patient tissues

2020

Human coronavirus disease 2019 (COVID-19) is a life-threatening and highly contagious disease caused by coronavirus SARS-CoV-2. Sensitive and specific detection of SARS-CoV-2 virus in tissues and cells of COVID-19 patients will support investigations of the biologic behavior and tissue and cell tropism of this virus. We identified two commercially available affinity-purified polyclonal antibodies raised against Nucleocapsid and Spike proteins of SARS-CoV-2 that provide sensitive and specific detection of the virus by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Protocols are presented that are mutually validated by matched detection patterns of virus-infected cells in autopsy lung tissue of COVID-19 deceased patients by the two distinctly different antibodies. Negative controls include autopsy lung tissue from patient who died from non-COVID-19 respiratory disease and control rabbit immunoglobulin. SARS-CoV-2 detection in human tissues will provide insights into...

Exploring the Immunodominant Epitopes of SARS-CoV-2 Nucleocapsid Protein as Exposure Biomarker

Cureus, 2023

Background The nucleocapsid protein (N protein) of SARS-CoV-2 is undeniably a potent target for the development of diagnostic tools due to its abundant expression and lower immune evasion pressure compared to spike (S) protein. Methods Blood samples of active COVID-19 infections (n=71) and post-COVID-19 (n=11) were collected from a tertiary care hospital in India; pre-COVID-19 (n=12) sera samples served as controls. Real-time reverse transcriptase-PCR (rRT-PCR) confirmed pooled sera samples (n=5) were used with PEPperCHIP® SARS-CoV-2 Proteome Microarray (PEPperPRINT GmbH, Germany) to screen immunodominant epitopes of SARS-CoV-2. Highly immunodominant epitopes were then commercially synthesized and further validated for their immunoreactivity by dot-blot and ELISA. Results The lowest detectable concentration (LDC) of the N1 peptide in the dot-blot assay was 12.5 µg demonstrating it to be fairly immunoreactive compared to control sera. IgG titers against the contiguous peptide (N2: 156AIVLQLPQGTTLPKGFYAEGS176) was found to be significantly higher (p=0.018) in post-COVID-19 compared to pre-COVID-19 control sera. These results suggested that N2-specific IgG titers buildup over time as expected in post-COVID-19 sera samples, while a non-significant immunoreactivity of the N2 peptide was also observed in active-COVID-19 sera samples. However, there were no significant differences in the total IgG titers between active COVID-19 infections, post-COVID-19 and pre-COVID-19 controls. Conclusion The N2-specific IgG titers in post-COVID-19 samples demonstrated the potential of N protein as an exposure biomarker, particularly in sero-surveillance studies.

Epitope mapping of SARS-CoV-2 spike protein differentiates the antibody binding activity in vaccinated and infected individuals

Frontiers in Virology

Previous studies have attempted to characterize the antibody response of individuals to the SARS-CoV-2 virus on a linear peptide level by utilizing peptide microarrays. These studies have helped to identify epitopes that have potential to be used for diagnostic tests to identify infected individuals. The immunological responses of individuals who have received the two most popular vaccines available in the US, the Moderna mRNA-1273 or the Pfizer BNT162b2 mRNA vaccines, have not been characterized. We aimed to identify linear peptides of the SARS-CoV-2 spike protein that elicited high IgG or IgA binding activity and to compare the immunoreactivity of infected individuals to those who received both doses of either vaccine by utilizing peptide microarrays. Our results revealed peptide epitopes of significant IgG binding among recently infected individuals. Some of these peptides are located near variable regions of the receptor binding domains as well as the conserved region in the c-t...

Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles

Viruses

The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions. The results showed that among the particip...

Multiepitope Proteins for the Differential Detection of IgG Antibodies against RBD of the Spike Protein and Non-RBD Regions of SARS-CoV-2

2021

The COVID-19 pandemic has exposed the extent of global connectivity and collective vulnerability to emerging diseases. From its suspected origins in Wuhan, China, it spread to all corners of the world in a matter of months. The absence of high-performance, rapid diagnostic methods that could identify asymptomatic carriers contributed to its worldwide transmission. Serological tests offer numerous benefits compared to other assay platforms to screen large populations. First-generation assays contain targets that represent proteins from SARS-CoV-2. While they could be quickly produced, each actually has a mixture of specific and non-specific epitopes that vary in their reactivity for antibodies. To generate the next generation of the assay, epitopes were identified in three SARS-Cov-2 proteins (S, N, and Orf3a) by SPOT synthesis analysis. After their similarity to other pathogen sequences was analyzed, 11 epitopes outside of the receptor-binding domain (RBD) of the spike protein that ...

A SARS–CoV-2 Spike Receptor Binding Motif Peptide Induces Anti-Spike Antibodies in Mice andIs Recognized by COVID-19 Patients

Frontiers in Immunology, 2022

The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM 436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM 436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and-RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.