The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust (original) (raw)

Abstract

The terrestrial surface, the ''skin of the earth'', is an important interface for global (geochemical) material fluxes between major reservoirs of the Earth system: continental and oceanic crust, ocean and atmosphere. Because of a lack in knowledge of the geochemical composition of the terrestrial surface, it is not well understood how the geochemical evolution of the Earth's crust is impacted by its properties. Therefore, here a first estimate of the geochemical composition of the terrestrial surface is provided, which can be used for further analysis. The geochemical average compositions of distinct lithological classes are calculated based on a literature review and applied to a global lithological map. Comparison with the bulk composition of the upper continental crust shows that the geochemical composition of the terrestrial surface (below the soil horizons) is significantly different from the assumed average of the upper continental crust. Specifically, the elements Ca, S, C, Cl and Mg are enriched at the terrestrial surface, while Na is depleted (and probably K). Analysis of these results provide further evidence that chemical weathering, chemical alteration of minerals in marine settings, biogeochemical processes (e.g. sulphate reduction in sediments and biomineralization) and evaporite deposition are important for the geochemical composition of the terrestrial surface on geological time scales. The movement of significant amounts of carbonate to the terrestrial surface is identified as the major process for observed Ca-differences. Because abrupt and significant changes of the carbonate abundance on the terrestrial surface are likely influencing CO 2-consumption rates by chemical weathering on geological time scales and thus the carbon cycle, refined, spatially resolved analysis is suggested. This should include the recognition of the geochemical composition of the shelf areas, now being below sea level.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (67)

  1. Albarede F (1998) The growth of continental crust. Tectonophysics 296(1-2):1-14
  2. Albarede F, Michard A (1986) Transfer of continental Mg, S, O and U to the mantle through hydrothermal alteration of the oceanic- crust. Chem Geol 57(1-2):1-15
  3. Amiotte-Suchet P, Probst JL, Ludwig W (2003) Worldwide distribu- tion of continental rock lithology: implications for the atmo- spheric/soil CO 2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycle 17(2):GB1038
  4. Arvidson RS, Mackenzie FT, Guidry M (2006) MAGic: a phanero- zoic model for the geochemical cycling of major rock-forming components. Am J Sci 306(3):135-190
  5. Berner RA (2006) GEOCARBSULF: a combined model for phan- erozoic atmospheric O 2 and CO 2 . Geochim Cosmochim Acta 70(23):5653-5664
  6. Berner EK, Berner RA (1995) Global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle River Beusen AHW, Bouwman AF, Durr HH, Dekkers ALM, Hartmann J (2009) Global patterns of dissolved silica export to the coastal zone: results from a spatially explicit global model. Glob Biogeochem Cycle 23, pp 1-13. doi:10.1029/2008GB003281
  7. Blum AE (1994) Feldspars in weatheirng. In: Nato advanced science institutes series, series C, mathematical and physical sciences. pp 595-630
  8. Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58(10):2341-2359
  9. Condie KC (1993) Chemical-composition and evolution of the upper continental-crust-contrasting results from surface samples and shales. Chem Geol 104(1-4):1-37
  10. Dessert C, Dupre B, Gaillardet J, Francois LM, Allegre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257-273
  11. Donnadieu Y, Godderis Y, Pierrehumbert R, Dromart G, Fluteau F, Jacob R (2006) A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochem Geophys Geosyst 7(11):1-21
  12. Du ¨rr HH (2003) Vers une typologie des syste ´mes fluviaux a `l'e ´chelle globale: quelques concepts et exemples a `re ´solution moyenne. Acade ´mie De Paris, Universite ´Pierre et Marie Curie, Paris Du ¨rr HH, Meybeck M, Du ¨rr SH (2005) Lithologic composition of the Earth's continental surfaces derived from a new digital map emphasizing riverine material transfer. Glob Biogeochem Cycle 19(4):GB4S10
  13. Edmond JM, Measures C, Mcduff RE, Chan LH, Collier R, Grant B, Gordon LI, Corliss JB (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean- Galapagos data. Earth Planet Sci Lett 46(1):1-18
  14. Gaillardet J, Dupre B, Allegre CJ (1999a) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63(23-24):4037-4051
  15. Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999b) Global silicate weathering and CO 2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1-4):3-30
  16. Garrels RM, Mackenzie FT (1967) Origin of chemical compositions of some springs and lakes. Adv Chem Ser 67:222-242
  17. Garrels RM, Mackenzie FT (1971) The evolution of sedimentary rocks. Norton, New York
  18. Godderis Y, Roelandt C, Schott J, Pierret MC, Francois LM (2009) Towards an integrated model of weathering, climate, and biospheric processes. Thermodyn Kinet Water Rock Interact 70:411-434
  19. Goldich SS (1938) A study in rock-weathering. J Geol 46(1):17-58
  20. Hartmann J (2009) Bicarbonate-fluxes and CO 2 -consumption by chemical weathering on the Japanese archipelago-application of a multi-lithological model framework. Chem Geol 65(3/4): 237-271. doi:10.1016/j.chemgeo.2009.03.024
  21. Hartmann J, Moosdorf N (2010) Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago-implications for global scale analysis. Chem Geol, pp 1-32. doi:10.1016/ j.chemgeo.2010.12.004
  22. Hartmann J, Jansen N, Du ¨rr HH, Kempe S, Ko ¨hler P (2009) Global CO 2 -consumption by chemical weathering: what is the contri- bution of highly active weathering regions? Glob Planet Chang 69:185-194. doi:10.1016/j.gloplacha.2009.07.007
  23. Hartmann J, Jansen N, Du ¨rr HH, Harashima A, Okubo K, Kempe S (2010a) Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of their first-order controls. Int J Earth Sci 99(1):207-230. doi:10.1007/s00531- 008-0381-5
  24. Hartmann J, Levy JK, Kempe S (2010b) Increasing dissolved silica trends in the Rhine River: an effect of recovery from high P loads? Limnology, pp 1-11. doi:10.1007/s10201-010-0322-4
  25. Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443(7113):811-817
  26. Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flogel S, Soding E (2006) Evaporites and the salinity of the ocean during the phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr Palaeoclimatol Palaeoecol 240(1-2):3-46
  27. Hofmann AW (2007) Geochemistry-the lost continents. Nature 448(7154):655-656
  28. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic-crust. Earth Planet Sci Lett 57(2):421-436
  29. Imai N, Terashima S, Ohta A, Mikoshiba M, Okai T, Tachibana Y, Togashi S, Matsuhisa Y, Kanai Y, Kamioka H (2004) Geo- chemical map of Japan. Geological Survey of Japan, AIST
  30. Imrie CE, Korre A, Munoz-Melendez G, Thornton I, Durucan S (2008) Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database. Sci Total Environ 393(1):96-110
  31. Kempe S (1979) Carbon in the rock cycle. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle-scope 13. Scientific Committee on Problems on the Environment (SCOPE), Old Woking, pp 343-375
  32. Le Maitre RW (1976) The chemical variability of some common igneous rocks. J Petrol 17(4):589-598
  33. Lee CTA, Morton DM, Little MG, Kistler R, Horodyskyj UN, Leeman WP, Agranier A (2008) Regulating continent growth and composition by chemical weathering. Proc Natl Acad Sci USA 105(13):4981-4986
  34. Lerman A, Wu LL, Mackenzie FT (2007) CO 2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar Chem 106(1-2): 326-350
  35. Li YH (2000) A compendium of geochemistry: from solar nebula to the human brain. Princeton University Press, Princeton
  36. Mackenzie FT, Garrels RM (1966) Chemical mass balance between rivers and oceans. Am J Sci 264(7):507-525
  37. Max Planck Institute for Chemistry, Mainz (2006) Geochemistry of rocks of the oceans and continents, GEOROC. http://georoc. mpch-mainz.gwdg.de/georoc/. Access date: 5-27-2006
  38. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282(4):401-450
  39. Meybeck M (1987) Global chemical-weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401-428
  40. Meybeck M (2003) Global occurence of major elements in rivers. In: Drever JI (ed) Surface and ground water, weathering and soils. Elsevier, Amsterdam, pp 207-223
  41. Michalopoulos P, Aller RC (1995) Rapid clay mineral formation in Amazon delta sediments-reverse weathering and oceanic elemental cycles. Science 270(5236):614-617
  42. Michalopoulos P, Aller RC (2004) Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta 68(5):1061-1085
  43. Millot R, Gaillardet J, Dupre B, Allegre CJ (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci Lett 196(1-2):83-98
  44. Moosdorf N, Hartmann J, Du ¨rr HH (2010) Lithological composition of the North American continent and implications of lithological map resolution for dissolved silica flux modeling. Geochem Geophys Geosyst 11(11):1-18. doi:10.1029/2010GC003259
  45. Morris J, Tera F (1989) Be-10 and Be-9 in mineral separates and whole rocks from volcanic arcs-implications for sediment subduction. Geochim Cosmochim Acta 53(12):3197-3206
  46. Oliva P, Viers J, Dupre B (2003) Chemical weathering in granitic environments. Chem Geol 202(3-4):225-256
  47. Paul HJ, Gillis KM, Coggon RM, Teagle DAH (2006) ODP Site 1224: a missing link in the investigation of seafloor weathering. Geochem Geophys Geosyst 7(2):1-15
  48. Pfeifer HR, Derro MH, Rey D, Schlegel C, Atteia O, Dalla Piazza R, Dubois JP, Mandia Y (2000) Natural trace element input to the soil-sediment-water plant system: examples of background and contaminated situations in Switzerland, Eastern France and Northern Italy. In: Marker B, Friese K (eds) Trace elements- their distribution and effects in the environment. Elsevier, Amsterdam, pp 33-84
  49. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921-944
  50. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3-4):325-394
  51. Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental-crust and crustal growth. Tectonics 3(1):63-77
  52. Ricke W (1960) Ein Beitrag Zur Geochemie des Schwefels. Geochim Cosmochim Acta 21(1-2):35-80
  53. Roelandt C, Godderis Y, Bonnet MP, Sondag F (2010) Coupled modeling of biospheric and chemical weathering processes at the continental scale. Glob Biogeochem Cycle 24:1-18
  54. Roth J (1878) Flusswasser, Meerwasser, Steinsalz. Verlag von Carl Habel, Berlin
  55. Roth J (1879) Allgemeine und Chemische Geologie, Erster Band- Bildung und Umbildung der Mineralien. Quell-, Fluss-und Meerwasser. Die Absa ¨tze. Verlag von Wilhelm Hertz (Besser- sche Buchhandlung), Berlin
  56. Roth J (1893) Allgemeine und Chemische Geologie, Dritter Band- Zweite Abteilung: Verwitterung, Zersetzung und Zersto ¨rung der Gesteine. Verlag von Wilhelm Hertz (Bessersche Buchhand- lung), Berlin
  57. Rudnick RL (1995) Making continental-crust. Nature 378(6557): 571-578
  58. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry. Elsevier, Amster- dam, pp 1-64
  59. Talbi E, Honnorez J (2003) Low-temperature alteration of mesozoic oceanic crust, ocean drilling program leg 185. Geochem Geophys Geosyst 4(5):1-21
  60. Taylor SR (1964) Abundance of chemical elements in the continental crust-a new table. Geochim Cosmochim Acta 28:1273-1285
  61. Taylor SR, Mclennan SM (1985) The continental crust: its compo- sition and evolution. Blackwell, Oxford
  62. Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental-crust. Rev Geophys 33(2):241-265
  63. Taylor SR, Mclennan SM, Mcculloch MT (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochim Cosmochim Acta 47(11):1897-1905
  64. Van der Weijden CH, Pacheco FAL (2003) Hydrochemistry, weath- ering and weathering rates on Madeira island. J Hydrol 283(1-4):122-145
  65. Wedepohl KH (1969) Handbook of geochemistry I. Springer, Berlin Wedepohl KH (1995) The composition of the continental-crust. Geochim Cosmochim Acta 59(7):1217-1232
  66. West AJ, Galy A, Bickle M (2005) Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett 235(1-2):211-228
  67. White WM, Dupre B, Vidal P (1985) Isotope and trace-element geochemistry of sediments from the Barbados Ridge Demerara Plain Region, Atlantic-Ocean. Geochim Cosmochim Acta 49(9):1875-1886