EXPLORATION OF THE ACTIVE COMPOUNDS OF MORINGA OLEIFERA LAM AS HIV-1 REVERSE TRANSCRIPTASE INHIBITOR: A NETWORK PHARMACOLOGY AND MOLECULAR DOCKING APPROACH (original) (raw)
Objective: This study aims to predict the active compound of Moringa oleifera for the treatment of Human Immunodeficiency Virus (HIV), specifically targeting the HIV-1 reverse transcriptase (HIV-1 RT) enzyme using network pharmacology and molecular docking approach. Methods: The active ingredients of M. oleifera, were screened from the Knapsack database. Subsequently, HIV-1 RT and its related target compounds were retrieved from the Genecard database. The analysis of common targets involved protein-protein interactions (PPI) analysis using string databases and constructing interaction IDs using Cytoscape software. Gene Ontology (GO) functional and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Molecular docking studies were conducted using AutoDock Vina software to validate the results of the network pharmacological analysis. Results: A total of 63 active ingredients and 8601 targets related to HIV-1 RT were identified. The network analysis, encompassing GO and KEGG enrichment, revealed strong associations of common targets with key signaling pathways such as Tumor Necrosis Factor (TNF), Toll-Like Receptor (TLR), and apoptosis. Additionally, 11 compounds of M. oleifera, including apigenin, benzyl isothiocyanate, benzylamine, caffeic acid, ferulic acid, epicatechin, kaempferol, gallic acid, luteolin, syringic acid and vanillin were identified as potential vital compounds. Molecular docking analysis highlighted apigenin and kaempferol as the most promising compounds, exhibiting the lowest binding affinity to the HIV-1 RT enzyme. These compounds correlated with caspase-3(CASP3), caspase-9 (CASP9), and BCL2 Apoptosis Regulator (BAX) protein, stimulating cell apoptosis through multiple pathways. Conclusion: The study highlighted that apigenin and kaempferol are potential compound of M. oleifera in HIV-1 treatment through inhibition activity at HIV-1 RT Enzyme.