Hospital acquired pressure injury prediction in surgical critical care patients (original) (raw)

A Comprehensive and Improved Definition for Hospital-Acquired Pressure Injury Classification Based on Electronic Health Records: Comparative Study

JMIR Medical Informatics, 2023

Background: Patients develop pressure injuries (PIs) in the hospital owing to low mobility, exposure to localized pressure, circulatory conditions, and other predisposing factors. Over 2.5 million Americans develop PIs annually. The Center for Medicare and Medicaid considers hospital-acquired PIs (HAPIs) as the most frequent preventable event, and they are the second most common claim in lawsuits. With the growing use of electronic health records (EHRs) in hospitals, an opportunity exists to build machine learning models to identify and predict HAPI rather than relying on occasional manual assessments by human experts. However, accurate computational models rely on high-quality HAPI data labels. Unfortunately, the different data sources within EHRs can provide conflicting information on HAPI occurrence in the same patient. Furthermore, the existing definitions of HAPI disagree with each other, even within the same patient population. The inconsistent criteria make it impossible to benchmark machine learning methods to predict HAPI. Objective: The objective of this project was threefold. We aimed to identify discrepancies in HAPI sources within EHRs, to develop a comprehensive definition for HAPI classification using data from all EHR sources, and to illustrate the importance of an improved HAPI definition. Methods: We assessed the congruence among HAPI occurrences documented in clinical notes, diagnosis codes, procedure codes, and chart events from the Medical Information Mart for Intensive Care III database. We analyzed the criteria used for the 3 existing HAPI definitions and their adherence to the regulatory guidelines. We proposed the Emory HAPI (EHAPI), which is an improved and more comprehensive HAPI definition. We then evaluated the importance of the labels in training a HAPI classification model using tree-based and sequential neural network classifiers. Results: We illustrate the complexity of defining HAPI, with <13% of hospital stays having at least 3 PI indications documented across 4 data sources. Although chart events were the most common indicator, it was the only PI documentation for >49% of the stays. We demonstrate a lack of congruence across existing HAPI definitions and EHAPI, with only 219 stays having a consensus positive label. Our analysis highlights the importance of our improved HAPI definition, with classifiers trained using our labels outperforming others on a small manually labeled set from nurse annotators and a consensus set in which all definitions agreed on the label. Conclusions: Standardized HAPI definitions are important for accurately assessing HAPI nursing quality metric and determining HAPI incidence for preventive measures. We demonstrate the complexity of defining an occurrence of HAPI, given the conflicting and incomplete EHR data. Our EHAPI definition has favorable properties, making it a suitable candidate for HAPI classification tasks. JMIR Med Inform 2023;11:e40672

Investigating the potential for machine learning prediction of patient outcomes: a retrospective study of hospital acquired pressure injuries

2020

BackgroundWhile recent research efforts to reduce pressure ulcers in the clinical context have focused on key retrospective characteristics, little work has focused on creating real-time predictive models to prevent this avoidable hospital-acquired injury. Furthermore, existing machine learning heuristics often fail to surpass traditional statistical models or provide individual-level risk assessments with explanations for each patient. Thus, we sought to compare the predictive performance of five machine learning and traditional statistical modeling techniques to predict the occurrence of Hospital Acquired Pressure Injuries (HAPI).MethodsElectronic Medical Record (EMR) information was collected from 57,227 hospitalizations, containing 241 positive HAPI cases, acquired from Dartmouth Hitchcock Medical Center from April 2011 to December 2016. The five classifiers were trained to predict HAPI incidence and performance was assessed using the C-statistic or Area Under the Receiver Opera...

An Integrated System of Braden Scale and Random Forest Using Real-Time Diagnoses to Predict When Hospital-Acquired Pressure Injuries (Bedsores) Occur

International Journal of Environmental Research and Public Health

Background and Objectives: Bedsores/Pressure Injuries (PIs) are the second most common diagnosis in healthcare system billing records in the United States and account for 60,000 deaths annually. Hospital-Acquired Pressure Injuries (HAPIs) are one classification of PIs and indicate injuries that occurred while the patient was cared for within the hospital. Until now, all studies have predicted who will develop HAPI using classic machine algorithms, which provides incomplete information for the clinical team. Knowing who will develop HAPI does not help differentiate at which point those predicted patients will develop HAPIs; no studies have investigated when HAPI develops for predicted at-risk patients. This research aims to develop a hybrid system of Random Forest (RF) and Braden Scale to predict HAPI time by considering the changes in patients’ diagnoses from admission until HAPI occurrence. Methods: Real-time diagnoses and risk factors were collected daily for 485 patients from adm...

Machine Learning Approaches for Hospital Acquired Pressure Injuries: A Retrospective Study of Electronic Medical Records

Frontiers in Medical Technology

BackgroundMany machine learning heuristics integrate well with Electronic Medical Record (EMR) systems yet often fail to surpass traditional statistical models for biomedical applications.ObjectiveWe sought to compare predictive performances of 12 machine learning and traditional statistical techniques to predict the occurrence of Hospital Acquired Pressure Injuries (HAPI).MethodsEMR information was collected from 57,227 hospitalizations acquired from Dartmouth Hitchcock Medical Center (April 2011 to December 2016). Twelve classification algorithms, chosen based upon classic regression and recent machine learning techniques, were trained to predict HAPI incidence and performance was assessed using the Area Under the Receiver Operating Characteristic Curve (AUC).ResultsLogistic regression achieved a performance (AUC = 0.91 ± 0.034) comparable to the other machine learning approaches. We report discordance between machine learning derived predictors compared to the traditional statist...

Prediction of Inpatient Pressure Ulcers Based on Routine Healthcare Data Using Machine Learning Methodology

2021

Despite the relevance of pressure ulcers (PU) in inpatient care, the predictive power and role of care-related risk factors (e.g. surgical anesthesia) remain unclear. We investigated the predictability of PU incidence and its association with multiple care variables. We included all somatic cases between 2014 and 2018 with length of stay ≥2 days in a German university hospital. For regression analyses and prediction we used Bayesian Additive Regression Trees (BART) as nonparametric modeling approach. To assess predictive accuracy, we compared BART and logistic regression (LR) using area under the curve (AUC) and confusion matrices. The analysis of 149,006 cases revealed high predictive variable importance and associations between incident PU and intensive care with ventilation, age, surgical anesthesia (≥1 hour) and number of care-involved wards. Despite high AUCs (LR: 0.89; BART: 0.9), the confusion matrices showed a higher number of false negative (LR: 816; BART: 826) than true po...

Machine Learning–Based Prediction Models for Different Clinical Risks in Different Hospitals: Evaluation of Live Performance

Journal of Medical Internet Research, 2022

Background: Machine learning algorithms are currently used in a wide array of clinical domains to produce models that can predict clinical risk events. Most models are developed and evaluated with retrospective data, very few are evaluated in a clinical workflow, and even fewer report performances in different hospitals. In this study, we provide detailed evaluations of clinical risk prediction models in live clinical workflows for three different use cases in three different hospitals. Objective: The main objective of this study was to evaluate clinical risk prediction models in live clinical workflows and compare their performance in these setting with their performance when using retrospective data. We also aimed at generalizing the results by applying our investigation to three different use cases in three different hospitals. Methods: We trained clinical risk prediction models for three use cases (ie, delirium, sepsis, and acute kidney injury) in three different hospitals with retrospective data. We used machine learning and, specifically, deep learning to train models that were based on the Transformer model. The models were trained using a calibration tool that is common for all hospitals and use cases. The models had a common design but were calibrated using each hospital's specific data. The models were deployed in these three hospitals and used in daily clinical practice. The predictions made by these models were logged and correlated with the diagnosis at discharge. We compared their performance with evaluations on retrospective data and conducted cross-hospital evaluations. Results: The performance of the prediction models with data from live clinical workflows was similar to the performance with retrospective data. The average value of the area under the receiver operating characteristic curve (AUROC) decreased slightly by 0.6 percentage points (from 94.8% to 94.2% at discharge). The cross-hospital evaluations exhibited severely reduced performance: the average AUROC decreased by 8 percentage points (from 94.2% to 86.3% at discharge), which indicates the importance of model calibration with data from the deployment hospital. Conclusions: Calibrating the prediction model with data from different deployment hospitals led to good performance in live settings. The performance degradation in the cross-hospital evaluation identified limitations in developing a generic model for different hospitals. Designing a generic process for model development to generate specialized prediction models for each hospital guarantees model performance in different hospitals.

Using machine‐learning methods to predict in‐hospital mortality through the Elixhauser index: A Medicare data analysis

Research in Nursing & Health, 2023

Background: Early and accurate identification of sepsis patients with high risk of in-hospital death can help physicians in intensive care units (ICUs) make optimal clinical decisions. This study aimed to develop machine learning-based tools to predict the risk of hospital death of patients with sepsis in ICUs. Methods: The source database used for model development and validation is the medical information mart for intensive care (MIMIC) III. We identified adult sepsis patients using the new sepsis definition Sepsis-3. A total of 86 predictor variables consisting of demographics, laboratory tests and comorbidities were used. We employed the least absolute shrinkage and selection operator (LASSO), random forest (RF), gradient boosting machine (GBM) and the traditional logistic regression (LR) method to develop prediction models. In addition, the prediction performance of the four developed models was evaluated and compared with that of an existent scoring toolsimplified acute physiology score (SAPS) IIusing five different performance measures: the area under the receiver operating characteristic curve (AUROC), Brier score, sensitivity, specificity and calibration plot. Results: The records of 16,688 sepsis patients in MIMIC III were used for model training and test. Amongst them, 2949 (17.7%) patients had in-hospital death. The average AUROCs of the LASSO, RF, GBM, LR and SAPS II models were 0.829, 0.829, 0.845, 0.833 and 0.77, respectively. The Brier scores of the LASSO, RF, GBM, LR and SAPS II models were 0.108, 0.109, 0.104, 0.107 and 0.146, respectively. The calibration plots showed that the GBM, LASSO and LR models had good calibration; the RF model underestimated high-risk patients; and SAPS II had the poorest calibration. Conclusion: The machine learning-based models developed in this study had good prediction performance. Amongst them, the GBM model showed the best performance in predicting the risk of in-hospital death. It has the potential to assist physicians in the ICU to perform appropriate clinical interventions for critically ill sepsis patients and thus may help improve the prognoses of sepsis patients in the ICU.

Impact of Density of Lab Data in EHR for Prediction of Potentially Preventable Events

This paper presents an analysis of sparse and incomplete Electronic Health Record (EHR) data for the prediction of patients with the risk of Potentially Preventable Events (PPEs). PPEs are admissions, readmissions, complications and emergency department visits that could have been avoided if the patient had been given the appropriate interventions. Machine learning techniques have made the task of PPE detection less difficult. However, it is still a challenging task due to the sparse and incomplete nature of the EHR data. It is therefore important to investigate the factors that impact the prediction of PPE in EHR data. In this paper we define the term density for evaluating sparse and incomplete nature of the EHR data set. We analyze three important factors that impacts PPE prediction in sparse and incomplete EHR data. These factors are - 1) Effect of varying domain information in the patient records on PPE prediction, 2) Impact of a popular data mining pre-processing technique known as rank aggregation based feature selection on PPE prediction, and 3) Effect of ensemble classification on prediction of PPE. The results of the analysis indicate that the rank aggregation based feature selection technique and ensemble classification improves classification accuracy by approximately 3-4% despite of the sparse and incomplete nature of the data. However, eliminating patient records with less domain information, in order to reduce incompleteness in the data, does not cause an enhancement in the classification accuracy. We conclude that feature selection and ensemble classification techniques are important factors that affect classification accuracy even in sparse and incomplete data sets. We conclude as well that randomly decreasing domain information by varying lab values does not assist in increasing accuracy for the prediction of PPE.

An Integrated System of Multifaceted Machine Learning Models to Predict If and When Hospital-Acquired Pressure Injuries (Bedsores) Occur

International Journal of Environmental Research and Public Health

Hospital-Acquired Pressure Injury (HAPI), known as bedsore or decubitus ulcer, is one of the most common health conditions in the United States. Machine learning has been used to predict HAPI. This is insufficient information for the clinical team because knowing who would develop HAPI in the future does not help differentiate the severity of those predicted cases. This research develops an integrated system of multifaceted machine learning models to predict if and when HAPI occurs. Phase 1 integrates Genetic Algorithm with Cost-Sensitive Support Vector Machine (GA-CS-SVM) to handle the high imbalance HAPI dataset to predict if patients will develop HAPI. Phase 2 adopts Grid Search with SVM (GS-SVM) to predict when HAPI will occur for at-risk patients. This helps to prioritize who is at the highest risk and when that risk will be highest. The performance of the developed models is compared with state-of-the-art models in the literature. GA-CS-SVM achieved the best Area Under the Cur...

A comparison of logistic regression models with alternative machine learning methods to predict the risk of in-hospital mortality in emergency medical admissions via external validation

Health Informatics Journal

We compare the performance of logistic regression with several alternative machine learning methods to estimate the risk of death for patients following an emergency admission to hospital based on the patients’ first blood test results and physiological measurements using an external validation approach. We trained and tested each model using data from one hospital ( n = 24,696) and compared the performance of these models in data from another hospital ( n = 13,477). We used two performance measures – the calibration slope and area under the receiver operating characteristic curve. The logistic model performed reasonably well – calibration slope: 0.90, area under the receiver operating characteristic curve: 0.847 compared to the other machine learning methods. Given the complexity of choosing tuning parameters of these methods, the performance of logistic regression with transformations for in-hospital mortality prediction was competitive with the best performing alternative machine...