Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system (original) (raw)

Anatomy of CD1–lipid antigen complexes

Nature Reviews Immunology, 2005

| CD1 proteins bind lipids to form antigen complexes that contact T-cell receptors and activate T cells. Recent crystal structures of CD1 proteins show that their antigenbinding grooves are composed of up to four pockets (A′, C′, F′ and T′) and two antigen portals (C′ and F′). Although certain structural features are conserved among CD1 proteins, the grooves of CD1a, CD1b and CD1d differ in the number, shape and connectivity of their antigen-binding pockets. Here, we outline how the portals and pockets of CD1 antigenbinding grooves influence ligand specificity and facilitate the presentation of a surprisingly diverse set of antigenic lipids, glycolipids, lipopeptides and even small, non-lipidic molecules. NATURE REVIEWS | IMMUNOLOGY VOLUME 5 | MAY 2005 | 387

Human CD1 dimeric proteins as indispensable tools for research on CD1-binding lipids and CD1-restricted T cells

Journal of Immunological Methods, 2009

Antigen presenting molecules play an important role in both innate and adoptive immune responses by priming and activating T cells. Among them, CD1 molecules have been identified to present both exogenous and endogenous lipid antigens to CD1-restricted T cells. The involvement of CD1-restricted T cells in autoimmune diseases and in defense against infectious diseases, however, remains largely unknown. Identifying novel antigenic lipids that bind to CD1 molecules and understanding the role of CD1-restricted T cells should lead to the successful development of vaccines, because the lipids can be used as antigens and also as adjuvants. In this paper, we have constructed functional recombinant human CD1 dimeric proteins and established a competitive ELISA assay to measure the lipid binding to CD1 molecules using the CD1 dimers. By using the competitive ELISA assay, we were able to show that the lipid extracts from murine malaria parasites can actually be loaded onto CD1 molecules. In addition, we have demonstrated that artificial antigen-presenting cells, which consist of magnetic beads coated with CD1d dimer and anti-CD28 antibody, stimulated and expanded human invariant NKT cells as efficiently as autologous immature DCs. A set of the tools presented in the current study should be valuable for screening various CD1 molecule-binding lipid antigens and for isolating CD1-restricted T cells.

Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes

Proceedings of the National Academy of Sciences, 2011

CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts...

Isolated Polar Amino Acid Residues Modulate Lipid Binding in the Large Hydrophobic Cavity of CD1d

ACS chemical biology, 2016

The CD1d protein is a nonpolymorphic MHC class I-like protein that controls the activation of natural killer T (NKT) cells through the presentation of self- and foreign-lipid ligands, glycolipids, or phospholipids, leading to the secretion of various cytokines. The CD1d contains a large hydrophobic lipid binding pocket: the A' pocket of CD1d, which recognizes hydrophobic moieties of the ligands, such as long fatty acyl chains. Although lipid-protein interactions typically rely on hydrophobic interactions between lipid chains and the hydrophobic sites of proteins, we showed that the small polar regions located deep inside the hydrophobic A' pocket could be used for the modulation of the lipid binding. A series of the ligands, α-galactosyl ceramide (α-GalCer) derivatives containing polar groups in the acyl chain, was synthesized, and the structure-activity relationship studies demonstrated that simple modification from a methylene to an amide group in the long fatty acyl chain...

Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b

The EMBO Journal, 2006

CD1 proteins present lipid antigens to T cells. The antigens are acquired in the endosomal compartments. This raises the question of how the large hydrophobic CD1 pockets are preserved between the moment of biosynthesis in the endoplasmic reticulum and arrival to the endosomes. To address this issue, the natural ligands associated with a soluble form of human CD1b have been investigated. Using isoelectric focusing, native mass spectrometry and resolving the crystal structure at 1.8 Å resolution, we found that human CD1b is simultaneously associated with endogenous phosphatidylcholine (PC) and a 41-44 carbon atoms-long spacer molecule. The two lipids appear to work in concert to stabilize the CD1b groove, their combined size slightly exceeding the maximal groove capacity. We propose that the spacer serves to prevent binding of ligands with long lipid tails, whereas short-chain lipids might still displace the PC, which is exposed at the groove entrance. The data presented herein explain how the CD1b groove is preserved, and provide a rationale for the in vivo antigen-binding properties of CD1b.

Endogenous phosphatidylcholine and an long spacer ligand stabilize the lipid-binding groove of CD1b

Embo Journal, 2006

CD1 proteins present lipid antigens to T cells. The antigens are acquired in the endosomal compartments. This raises the question of how the large hydrophobic CD1 pockets are preserved between the moment of biosynthesis in the endoplasmic reticulum and arrival to the endosomes. To address this issue, the natural ligands associated with a soluble form of human CD1b have been investigated. Using isoelectric focusing, native mass spectrometry and resolving the crystal structure at 1.8 Å resolution, we found that human CD1b is simultaneously associated with endogenous phosphatidylcholine (PC) and a 41-44 carbon atoms-long spacer molecule. The two lipids appear to work in concert to stabilize the CD1b groove, their combined size slightly exceeding the maximal groove capacity. We propose that the spacer serves to prevent binding of ligands with long lipid tails, whereas short-chain lipids might still displace the PC, which is exposed at the groove entrance. The data presented herein explain how the CD1b groove is preserved, and provide a rationale for the in vivo antigen-binding properties of CD1b.

Determination of Cellular Lipids Bound to Human CD1d Molecules

PLoS ONE, 2009

CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.

Structure of an α-helical peptide and lipopeptide bound to the non-classical MHC class I molecule CD1d

The Journal of biological chemistry, 2016

Mouse CD1d is a non-classical MHC molecule able to present lipids and glycolipids to a specialized subset of T cells known as Natural Killer T (NKT) cells. The antigens presented by CD1d has been shown to cover a broad range of chemical structures and to follow precise rules determining the potency of the antigen in the context of T cell activation. Together with lipids, initial reports suggested that CD1d can also bind and present hydrophobic peptides with a motif of the nature [FW]-X-X-[ILM]-X-X-W. However, the exact location of peptide binding and the molecular basis for the required motif are currently unknown. Here we present the crystal structure of the first peptide identified to bind CD1d, p99, and show that it binds in the antigen-binding groove of CD1d in a manner compatible with its presentation to T cell receptors. Interestingly, the peptide adopts an α-helical conformation, which orients the motif residues toward its deep binding groove, therefore explaining the molecul...

Role of lipid trimming and CD1 groove size in cellular antigen presentation

The EMBO Journal, 2006

Cellular CD1 proteins bind lipids that differ in length (C 12À80 ), including antigens that exceed the capacity of the CD1 groove. This could be accomplished by trimming lipids to a uniform length before loading or by inserting each lipid so that it penetrates the groove to a varying extent. New assays to detect antigen fragments generated within human dendritic cells showed that bacterial antigens remained intact, even after delivery to lysosomes, where control lipids were cleaved. Further, recombinant CD1b proteins could bind and present C 80 lipid antigens using a mechanism that did not involve cellular enzymes or lipid cleavage, but was regulated by pH in the physiologic range. We conclude that endosomal acidification acts directly, rather than through enzymatic trimming, to insert lipids into CD1b. Lipids are loaded in an intact form, so that they likely protrude through a portal near the bottom of the groove, which represents an escape hatch for long lipids from mycobacterial pathogens. The EMBO Journal VOL 25 | NO 13 | 2006 EMBO THE EMBO JOURNAL THE EMBO JOURNAL