Epidemiology of Extended-spectrum beta-lactamase-producingEscherichia coliat the human-animal-environment interface in Wakiso district, Uganda (original) (raw)
Related papers
BackgroundExtended-spectrum beta-lactamase-producingEscherichia coli(ESBL-PE) represents a significant global public health concern. Much as humans, animals and environments harbor ESBL-PE, its epidemiology in Uganda is still not well understood. This study explains the epidemiology of ESBL-PE using the one health approach in selected farming households in Wakiso district, central Uganda.MethodologyEnvironmental, human, and animal samples were collected from 104 households. Additional data were obtained using observation checklists and through interviews with household members using a semi-structured questionnaire. Surface swabs, soil, water, human and animal fecal samples were introduced onto ESBL chromogenic agar. The isolates were identified using biochemical tests and double-disk synergy tests. To assess associations, prevalence ratios (PRs) were computed using a generalized linear model (GLM) analysis with modified Poisson and a log link with robust standard errors in R softwar...
PLOS global public health, 2023
Background Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-Ec) represents a significant global public health concern. The epidemiology of ESBL-Ec in Uganda is not well understood although it is harbored by humans, animals, and the environment. This study explains the epidemiology of ESBL-Ec using a one health approach in selected farming households in Wakiso district, Uganda. Methodology Environmental, human, and animal samples were collected from 104 households. Additional data were obtained using observation checklists and through interviews with household members using a semi-structured questionnaire. Surface swabs, soil, water, human and animal fecal samples were introduced onto ESBL chromogenic agar. The isolates were identified using biochemical tests and double-disk synergy tests. To assess associations, prevalence ratios (PRs) were computed using a generalized linear model (GLM) analysis with modified Poisson and a log link with robust standard errors in R software.
Infection and Drug Resistance, 2023
The occurrence of extended spectrum beta-lactamase (ESBL) producing bacteria such as Escherichia coli has increasingly become recognized beyond hospital settings. Resistance to other types of antibiotics limits treatment options while the existence of such bacteria among humans, animals, and the environment is suggestive of potential zoonotic and reverse-zoonotic transmission. This study aimed to establish the antibiotic susceptibility profiles of the ESBL-producing Escherichia coli (ESBL-EC) from human, animal, and environmental isolates obtained among farming households within Wakiso district using a One Health approach. Methods: A total of 100 ESBL-EC isolates from humans 35/100 (35%), animals 56/100 (56%), and the environment 9/100 (9%) were tested for susceptibility to 11 antibiotics. This was done using the Kirby-Bauer disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Data were analyzed in STATA ver. 16 and graphs were drawn in Microsoft excel ver. 10. Results: Most of the ESBL-EC isolates (98%) were resistant to more than two antibiotics. ESBL-EC isolates were most susceptible to meropenem (MEM) (88.0%), and imipenem (82.0%) followed by gentamicin (72%). ESBL-EC isolates from humans were most susceptible to meropenem (MEM) followed by imipenem (IPM)> gentamicin (CN)> ciprofloxacin (CIP). Animal samples were more susceptible to MEM, IPM, and CN but were highly resistant to cefotaxime (CTX)> cefepime (FEP)>other antibiotics. Multidrug resistance (MDR) was mostly reported among households keeping goats under intensive husbandry practices. Seven percent of the isolates exhibited carbapenem resistance while 22% showed aminoglycoside resistance. Similar resistance patterns among humans, animals, and environmental samples were also reported. Conclusion: Our study provides baseline information on non-hospital-based MDR caused by ESBL-EC using a One Health approach. ESBL-EC isolates were prevalent among apparently healthy community members, animals, and their environment. It is important to conduct more One Health approach studies to generate evidence on the drivers, resistance patterns, and transmission of ESBLproducing organisms at the human-animal-environmental interface.
The detection of extended-spectrum β-lactamase (ESBL) pr oducers in the fecal f lor a of healthy food-producing animals has increased in recent years. This is mainly attributed to the intense use of antibiotics in this sector. There is growing concern regarding the risk of spread of such bacteria, especially Escherichia coli and Salmonella, to humans and to the environment. The occurrence of ESBL producers in the major groups of livestock, i.e., poultry, pigs, cattle, and sheep is highlighted and discussed with regard to data that provide evidence for transmission of their resistance traits from livestock to humans and to farm environments.
Journal of Infection
This study aimed to assess and compare the epidemiology of faecal carriage of extended spectrum β-lactamase-producing enterobacteria (ESBL-E) in Hepatology departments of two hospitals specializing in liver diseases, Theodor Bilharz Research Institute (TBRI) in Cairo (Egypt) and Beaujon Hospital (Bj) in Clichy (France). CTX-M groups were identified by PCR, and TEM and SHV derivatives with the checkpoint system. Phylogenetic groups of E. coli were determined by multiplex PCR, and clone ST131 by PCR of gene pabB. Prevalence of ESBL-E was 77•6% (45/58) in TBRI and 6•5% (13/199) in Bj (P < 10 −7). Previous hospitalization was more common (P = 0•003) in Bj patients (93%) than in TBRI patients (45%) suggesting high prevalence of ESBL-E in the Egyptian community. The presence of E. coli B2 ST131 among ESBL-E faecal E. coli in Egypt confirms its pervasiveness in the community and raises concern regarding this highly virulent and resistant clone.
Ghana Medical Journal, 2021
Objective: This study determined the occurrence and distribution of Extended Spectrum β-Lactamase (ESBL) genotypes of E. coli isolates in Ho Teaching Hospital, Ghana.Design: A cross-sectional study.Setting: A single centre study was conducted at Ho Teaching Hospital of Ghana.Participants: Patients who visited Ho Teaching Hospital Laboratory with the request for culture and susceptibility testing.Main outcome measure: Escherichia coli were isolated, and Extended-Spectrum β-Lactamase genes were detected.Results: Of the 135 isolates, 56(41.5%,95% CI: 33.1% – 50.3%) were ESBL producers. More males, 14(58.3%), produced ESBL than females, 42(37.8%). The ESBL prevalence was highest among the elderly who were 80 years and above 3(100.0%), with the least prevalence among patients within 50-59 years and 0-9 years age bracket, representing 4(25.0%) and 3(27.3%), respectively. The total prevalence of ESBL was marginally higher among out-patients (41.8% 95% CI: 31.9% - 52.2%) compared to in-pati...
The Journal of Infection in Developing Countries, 2014
The prevalence of extended-spectrum beta-lactamases (ESBLs) varies between countries and institutions. There are no documented reports yet on the occurrence of ESBLs in bacteria from Southern Palestinian authority. This study was undertaken in order to detect the production of ESBLs among Klebsiella pneumoniae and Escherichia coli and to determine their antibiotic profile in our region. A cross-sectional study was conducted in a general hospital in the Palestinian authority over a 6-month period (from June to December 2007). A total of 200 clinical pathogens (100 K. pneumoniae and 100 E. coli isolates) were isolated from patients attending Nasser Hospital. The suspected ESBL-producing isolates were screened with three different methods: Kirby-Bauer disk diffusion, Oxoid combination disks and double-disk synergy test. Antimicrobial susceptibility testing was determined by the Kirby-Bauer disk diffusion technique. The present findings revealed a high occurrence rate of multi-drug resistance ESBL-producing K. pneumoniae (35%) and E. coli (9%). Meropenem was highly active against ESBL-producing isolates. The results of this study demonstrated the increasing occurrence rate of infection with ESBL-producing bacteria and the high rates of antimicrobial resistance encountered among them. Meropenem is still the drug of choice in the treatment of infections due to ESBL-producing isolates.
The Journal of Infection in Developing Countries
Introduction: While the molecular epidemiology of extended-spectrum-b-lactamase (ESBL)-producing E. coli is well known in Europe due to effective surveillance networks and substantial literature, data for Africa are less available, especially in Djibouti. Methodology: We studied 31 isolates of ESBL-producing E. coli from Djibouti and compared these molecular results with data available in Africa. Results: Susceptibility rates were 3.2% for ceftazidim, 48.4% for piperacillin-tazobactam, 90.3% for amikacine and 16.1% for ofloxacin. No isolate showed resistance to carbapenems or colistin. 30 E. coli (96.8%) were positive to blaCTX-M-15, 1 (3.2%) to blaCTX-M-14 and 10 (32.3%) to narrow-broad-spectrum blaTEM. No blaSHV were detected. Fluoroquinolone resistance analysis showed that 30 ofloxacin-resistant E. coli had the mutation Ser-83->Leu on the gyrA gene. 24 E. coli (77.4%) harboured the plasmid-borne aac(6 ')-Ib-cr gene. No E. coli carried the genes qnrA, qnrB and qepA. 10 iso...
P. O. Abba, 2019
The worldwide prevalence of extended-spectrum-beta-lactamase-producing Enterobacteriaceae (ESBL-E) is increasing, making the need for ESBL detection more urgent. In this study we investigated the presence of ESBL in 400 isolates of Escherichia coli from urine, stool, blood, wound swabs, throat swabs and sputum specimens collected from 6 selected health facilities (2 primary, 2 secondary and 2 tertiary) in Makurdi local government council.Standard microbiological methods were used for isolation, characterization and identification of E. coli. The presence of ESBL was determined using the double disc synergy method. Disc susceptibility test was performed on all isolates using standard techniques.The isolates showed high level of resistance to all the antibiotics tested except mipenem. Highest resistance was to penicillin 392(98.0%) followed by ceftriaxone 385(96.3%). The isolates showed least resistance to mipenem 02(0.5%). Out of the 400 isolates examined, 64 (16.0%) carried ESBL genes. Isolates from blood specimens (n = 5; 26.3%) harboured the highest percentage of ESBL genes followed by wound swabs isolates 9(17.3%). No ESBL gene was recovered from throat swabs (n = 0; 0.0%). There exists no significant difference between ESBL-producing E. coli andvarious clinical specimens (p > 0.05).Among the males, isolates from those between 45.0 and 58.0 years old harboured the highest percentage (18.8%; n= 6) of ESBL-producing E. coli isolates, while among the females, those within the age group 31.0 to 44.0 years harboured the highest percentage (25.0%; n=13). Benue State University Teaching Hospital (BSUTH),a tertiary care facility harboured the highest percentage of ESBL-producing Escherichia coli isolates, 29 (19.7%) and was followed by General Hospital (GH) 10(18.9%) which is a secondary care facility. There is no significant association between ESBL and health facilities (p=0.39).
Clinical Microbiology and Infection, 2012
The possible zoonotic spread of antimicrobial-resistant bacteria is controversial. This review discusses global molecular epidemiological data combining both analyses of the chromosomal background, using multilocus sequence typing (MLST), and analyses of plasmid (episomal) extended-spectrum b-lactamase (ESBL)/AmpC genes in Escherichia coli present in humans and animals. For consideration of major epidemiological differences, animals were separated into livestock and companion animals. MLST revealed the existence of ESBL-producing isolates thoughout the E. coli population, with no obvious association with any ancestral EcoR group. A similar distribution of major ESBL/AmpC types was apparent only in human isolates, regardless of their geographical origin from Europe, Asia, or the Americas, whereas in animals this varied extensively between animal groups and across different geographical areas. In contrast to the diversity of episomal ESBL/AmpC types, isolates from human and animals mainly shared identical sequence types (STs), suggesting transmission or parallel micro-evolution. In conclusion, the opinion that animal ESBL-producing E. coli is a major source of human infections is oversimplified, and neglects a highly complex scenario.