Understanding the Role of Water Flow and the Porous Transport Layer on the Performance of Proton Exchange Membrane Water Electrolyzers (original) (raw)

Effect of flow regime of circulating water on a proton exchange membrane electrolyzer

International Journal of Hydrogen Energy, 2010

The flow characteristics of circulating water in a proton exchange membrane (PEM) electrolyzer were experimentally evaluated using a small cell and two-phase flow theory. Results revealed that when a two-phase flow of circulating water at the anode is either slug or annular, then mass transport of the water for the anode reaction is degraded, and that the concentration overvoltage increases at higher current density compared to that when the flow is bubbly. In a serpentine-dual flow field, when both phases of the two-phase flow are assumed laminar, then the increase in pressure drop caused by the increase in gas production can be explained relatively well using the LockharteMartinelli method with the Chisholm parameter. The optimal flow rate of circulating water was also discussed based on mass balance analysis.

Water transport through porous media and in flow channels of proton exchange membrane fuel cell

2014

Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow chan...

Influence of Stoichiometry on the Two-Phase Flow Behavior of Proton Exchange Membrane Electrolyzers

Energies

In order for electrolysis cells to operate optimally, mass transport must be improved. The key initial component for optimal operation is the current collector, which is also essential for mass transport. Water as an educt of the reaction must be evenly distributed by the current collector to the membrane electrode assembly. As products of the reaction, hydrogen and oxygen must also be directed quickly and efficiently through the current collector into the channel and removed from the cell. The second key component is the stoichiometry, which includes the current density and water volume flow rate and represents the ratio between the water supplied and water consumed. This study presents the correlation of the stoichiometry, two-phase flow in the channel and gas fraction in the porous transport layer for the first time. The gas-water ratio in the channel and porous transport layer during cell operation with various stoichiometries was investigated by means of a model in the form of ...

Water and charge transport models in proton exchange membranes: An overview

Desalination, 2012

Recently, the significant role of water management in affecting the performance and durability of proton exchange membrane fuel cell (PEMFC) has been subjective to an intensive research to understand water transport phenomena which is marked by two processes: water adsorption and water diffusion. Various mathematical models have been developed to address both processes on a different basis. This article briefly reviews various water transport models in a comparative manner to have a better understanding on the role of water hydration with respect to membrane structure and transport mechanism, in affecting the proton transport in the membranes. A discussion on the validity and reliability of the models for describing the water management is also presented. The limitations that are required to be overcome to design new materials meeting the new trends of membranes development for fuel cell are also highlighted.

In situ measurements of water transfer due to different mechanisms in a proton exchange membrane fuel cell

Journal of Power Sources, 2008

Water management is of critical importance in a proton exchange membrane (PEM) fuel cell, in particular, those based on a sulfonic acid polymer, which requires water to conduct protons. Yet there are limited in situ studies of water transfer through the membrane and no data are available for water transfer due to individual mechanisms through the membrane in an operational fuel cell. Thus it is the objective of this study to measure water transfer through the membrane due to each individual mechanism in an operational PEM fuel cell. The three different mechanisms of water transfer, i.e., electro-osmotic drag, diffusion and hydraulic permeation are isolated by specially imposed boundary conditions. Therefore water transfer through the membrane due to each mechanism is measured separately. In this study, all the data is collected in an actual assembled operational fuel cell. The experimental results show that water transfer due to hydraulic permeation, i.e. the pressure difference between the anode and cathode is at least an order of magnitude lower than those due to the other two mechanisms. The data for water transfer due to diffusion through the membrane are in good agreement with some of the ex situ data in the literature. The data for electro-osmosis show that the number of water molecules dragged per proton increases not only with temperature but also with current density, which is different from existing data in the literature. The methodology used in this study is simple and can be easily adopted for in situ water transfer measurement due to different mechanisms in other PEM fuel cells without any cell modifications.

Water permeation through gas diffusion layers of proton exchange membrane fuel cells

Journal of Power Sources, 2011

Water transport through gas diffusion layer of proton exchange membrane fuels cells is investigated experimentally. A filtration cell is designed and the permeation threshold and the apparent water permeability of several carbon papers are investigated. Similar carbon paper with different thicknesses and different Teflon loadings are tested to study the effects of geometrical and surface properties on the water transport. Permeation threshold increases with both GDL thickness and Teflon loading. In addition, a hysteresis effect exists in GDLs and the permeation threshold reduces as the samples are retested. Moreover, several compressed GDLs are tested and the results show that compression does not affect the breakthrough pressure significantly. The measured values of apparent permeability indicate that the majority of pores in GDLs are not filled with water and the reactant access to the catalyst layer is not hindered.

Effect of Gas Diffusion Layer Deformation on Liquid Water Transport in Proton Exchange Membrane Fuel Cell

Effect of Gas Diffusion Layer Deformation on Liquid Water Transport in Proton Exchange Membrane Fuel Cell, 2014

In this study, a three-dimensional numerical model, based on the volume-of-fluid (VOF) method, was developed to investigate the water transport characteristics in the cathode of a proton exchange membrane fuel cell (PEMFC) taking into account the deformation of the gas diffusion layer (GDL). Simulations are carried out with different inlet flow rates, amount of liquid water in the GDL, positions of water droplet in the flow channel, and contact angles of the GDL and flow channel surfaces. Two mechanisms of liquid water droplet leaving the GDL are observed. One is driven by the surface tension when the gas flow rate is low, whereas the other is driven by the gas flow at high gas flow rates. Meanwhile, the deformation of the GDL and other factors highly influence the water droplet dynamics. Keywords: proton exchange membrane fuel cell, volume of fluid, gas diffusion layer, water transport, deformation