Effect of Cilostazol-Loaded PCL/PEG Nanocapsules on Abdominal Aortic Tunics and Lipid Profile of Wistar Rats (original) (raw)
Related papers
International Journal of Nanomedicine, 2011
Cholesterol-rich nanoemulsions (LDE) bind to low-density lipoprotein (LDL) receptors and after injection into the bloodstream concentrate in aortas of atherosclerotic rabbits. Association of paclitaxel with LDE markedly reduces the lesions. In previous studies, treatment of refractory cancer patients with etoposide associated with LDE had been shown devoid of toxicity. In this study, the ability of etoposide to reduce lesions and inflammatory factors in atherosclerotic rabbits was investigated. Methods: Eighteen New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30, nine animals were treated with four weekly intravenous injections of etoposide oleate (6 mg/kg) associated with LDE, and nine control animals were treated with saline solution injections. Results: LDE-etoposide reduced the lesion areas of cholesterol-fed animals by 85% and intima width by 50% and impaired macrophage and smooth muscle cell invasion of the intima. Treatment also markedly reduced the protein expression of lipoprotein receptors (LDL receptor, LDL-related protein-1, cluster of differentiation 36, and scavenger receptor class B member 1), inflammatory cytokines (interleukin-1β and tumor necrosis factor-α), matrix metallopeptidase-9, and cell proliferation markers (topoisomerase IIα and tubulin). Conclusion: The ability of LDE-etoposide to strongly reduce the lesion area and the inflammatory process warrants the great therapeutic potential of this novel preparation to target the inflammatory-proliferative basic mechanisms of the disease.
Atherosclerosis, 2008
A cholesterol-rich nanoemulsion (LDE) that resembles LDL binds to the LDL receptors and after injection into the blood stream may concentrate in cells with LDL receptor overexpression, as occurs in neoplasias and other proliferative processes. Thus, LDE can be used as vehicle to target drugs against those cells. The current study was designed to verify in rabbits whether LDE concentrates in the lesioned rabbit artery and whether a paclitaxel derivative, paclitaxel oleate, associated to LDE could reduce the atherosclerotic lesions. Sixteen male New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30 under cholesterol feeding, eight animals were treated with four weekly intravenous injections of LDE-paclitaxel (4 mg/kg) and eight with four weekly intravenous saline solution injections for additional 30 days. On day 60, the animals were sacrificed for analysis. The uptake of LDE labeled with [ 14 C]-cholesteryl oleate by the aortic arch of cholesterol-fed rabbits was twice as much that observed in animals fed only regular chow. LDE-paclitaxel reduced the lesion areas of cholesterol-fed animals by 60% and intima-media ratio fourfold and inhibited the macrophage migration and the smooth muscle cell proliferation and invasion of the intima. LDE-paclitaxel treatment had no toxicity. In conclusion, LDE-paclitaxel produced pronounced atherosclerosis regression without toxicity and has shown remarkable potential in cardiovascular therapeutics.
Journal of Pharmacology and Experimental Therapeutics, 2004
This study shows that 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3,4-dihydro-2(1H)-quinolinone (cilostazol) suppresses the atherosclerotic lesion formation in the low-density lipoprotein receptor (Ldlr)-null mice. Ldlr-null mice fed a high cholesterol diet showed multiple plaque lesions in the proximal ascending aorta including aortic sinus, accompanied by increased macrophage accumulation with increased expression of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1). Supplementation of cilostazol (0.2% w/w) in diet significantly decreased the plaque lesions with reduced macrophage accumulation and suppression of VCAM-1 and MCP-1 in situ. Increased superoxide and tumor necrosis factor-␣ (TNF-␣) production were significantly lowered by cilostazol in situ as well as in cultured human umbilical vein endothelial cells (HUVECs). TNF-␣-induced increased inhibitory Jeong Hyun Lee and Goo Taeg Oh equally contributed to this study. Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.
EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2016
The aim of this study was to evaluate the biological efficacy of a novel lower-dose (2.5 µg/mm2) encapsulated paclitaxel nanocrystal-coated balloon (Nano-PCB) in the familial hypercholesterolaemic swine (FHS) model of iliofemoral in-stent restenosis. Nano-PCB pharmacokinetics were assessed in 20 femoral arteries (domestic swine). Biological efficacy was evaluated in ten FHS: 14 days following bare metal stent implantation each stent segment was randomised to a clinically available PCB (IN.PACT, n=14), the Nano-PCB (n=14) or an uncoated balloon (n=12). Angiographic, optical coherence tomography and histological evaluation was performed at 28 days after treatment. Arterial paclitaxel concentration was 120.7 ng/mg at one hour and 7.65 ng/mg of tissue at 28 days with the Nano-PCB. Compared to the control uncoated group, both PCBs significantly reduced percent area stenosis (Nano-PCB: 36.0±14.2%, IN.PACT: 29.3±9.2% vs control: 67.9±15.1%, p<0.001). Neointimal distribution in the entir...
The Therapeutic Potential of Nanoparticles to Reduce Inflammation in Atherosclerosis
2019
Chronic inflammation is one of the main determinants of atherogenesis. The traditional medications for treatment of atherosclerosis are not very efficient in targeting atherosclerotic inflammation. Most of these drugs are non-selective, anti-inflammatory and immunosuppressive agents that have adverse effects and very limited anti-atherosclerotic effects, which limits their systemic administration. New approaches using nanoparticles have been investigated to specifically deliver therapeutic agents directly on atherosclerotic lesions. The use of drug delivery systems, such as polymeric nanoparticles, liposomes, and carbon nanotubes are attractive strategies, but some limitations exist. For instance, nanoparticles may alter the drug kinetics, based on the pathophysiological mechanisms of the diseases. In this review, we will update pathophysiological evidence for the use of nanoparticles to reduce inflammation and potentially prevent atherogenesis in different experimental models.
Clinics, 2016
The toxicity of anti-cancer chemotherapeutic agents can be reduced by associating these compounds, such as the anti-proliferative agent paclitaxel, with a cholesterol-rich nanoemulsion (LDE) that mimics the lipid composition of low-density lipoprotein (LDL). When injected into circulation, the LDE concentrates the carried drugs in neoplastic tissues and atherosclerotic lesions. In rabbits, atherosclerotic lesion size was reduced by 65% following LDE-paclitaxel treatment. The current study aimed to test the effectiveness of LDE-paclitaxel on inpatients with aortic atherosclerosis. METHODS: This study tested a 175 mg/m 2 body surface area dose of LDE-paclitaxel (intravenous administration, 3/3 weeks for 6 cycles) in patients with aortic atherosclerosis who were aged between 69 and 86 yrs. A control group of 9 untreated patients with aortic atherosclerosis (72-83 yrs) was also observed. RESULTS: The LDE-paclitaxel treatment elicited no important clinical or laboratory toxicities. Images were acquired via multiple detector computer tomography angiography (64-slice scanner) before treatment and at 1-2 months after treatment. The images showed that the mean plaque volume in the aortic artery wall was reduced in 4 of the 8 patients, while in 3 patients it remained unchanged and in one patient it increased. In the control group, images were acquired twice with an interval of 6-8 months. None of the patients in this group exhibited a reduction in plaque volume; in contrast, the plaque volume increased in three patients and remained stable in four patients. During the study period, one death unrelated to the treatment occurred in the LDE-paclitaxel group and one death occurred in the control group. CONCLUSION: Treatment with LDE-paclitaxel was tolerated by patients with cardiovascular disease and showed the potential to reduce atherosclerotic lesion size.
Influence of Drugs Carried in Lipid Nanoparticles in Coronary Disease of Rabbit Transplanted Heart
The Annals of thoracic surgery, 2017
Coronary allograft vasculopathy is an inflammatory-proliferative process that compromises the long-term success of heart transplantation and currently has no effective prevention and treatment. Lipid nanoparticles, termed LDE can carry chemotherapeutic agents in the circulation and concentrates them in the heart. Twenty-eight rabbits fed a cholesterol-rich diet and submitted to heterotopic heart transplantation were treated with cyclosporine A (10 mg/kg daily) and allocated to four groups of 7 animals treated with intravenous LDE-methotrexate (MTX; 4 mg/kg weekly), with LDE-paclitaxel (PACLI; 4 mg/kg weekly), or with LDE-PACLI (4 mg/kg weekly) and LDE-MTX (4 mg/kg weekly). A control group was treated with only weekly intravenous saline solution. Animals were euthanized 6 weeks later for morphometric, histologic, immunohistochemical, and gene expression analysis of the graft and native hearts. Compared with controls, grafts of rabbits treated with LDE-PACLI showed 50% reduction of co...