Une nouvelle méthode de relaxation pour les équations de Navier–Stokes compressibles (original) (raw)

On considère les équations de Navier-Stokes compressibles pour des gaz régis par des lois générales de pression et de température, celles-ci étant compatibles avec l'existence d'une entropie et les relations de Gibbs. On étend la méthode de relaxation introduite pour les équations d'Euler par Coquel et Perthame. En conservant les mêmes conditions « souscaractéristiques » pour les flux hyperboliques et grâce à une décomposition consistante des flux diffusifs basée sur une température globale, on montre la stabilité du système relaxé via le signe de la production d'une certaine entropie. Une analyse asymptotique au premier ordre autour des états d'équilibre confirme le résultat de stabilité. On présente enfin une implémentation numérique de la méthode. Pour citer cet article : E.