Enzymatic Evaluation of General Anesthesia-Induced Neurotoxicity in Aneurysmal Subarachnoid Hemorrhage Patients (original) (raw)
Related papers
Journal of Neurosurgical Anesthesiology, 2019
Background: General anesthesia has been associated with neuronal apoptosis and activation of caspases. Apoptosis is a crucial factor in early brain injury following aneurysmal subarachnoid hemorrhage (aSAH). We conducted a double-blind, prospective, randomized pilot study to evaluate the effect of 4 anesthetic agents on cerebrospinal fluid (CSF) and serum caspase-3 levels in aSAH patients. Materials and Methods: A total of 44 good-grade aSAH patients with preoperative lumbar drain scheduled for surgical clipping or endovascular coiling were randomized to receive maintenance of anesthesia with propofol, isoflurane, sevoflurane, or desflurane. Caspase-3 levels were measured in CSF and serum samples collected at baseline, 1 hour after induction, and 1 hour after cessation of anesthesia. Results: Compared with baseline, there was a decrease in CSF caspase-3 levels and an increase in serum caspase-3 levels 1 hour after exposure to all 4 anesthetic agents; levels returned to baseline values after cessation of anesthesia. Median CSF caspase-3 levels at baseline, 1 hour after anesthesia exposure, and 1 hour after cessation of anesthesia were 0.0679, 0.0004, and 0.0689 ng/mL, respectively (P < 0.05). Median serum caspase-3 levels at baseline, 1 hour after anesthesia exposure, and 1-hour after cessation of anesthesia were 0.0028, 0.0682, and 0.0044 ng/ mL, respectively (P < 0.05). Conclusions: Propofol, isoflurane, sevoflurane, or desflurane have similar effects on CSF and serum caspase-3. The reduction of intraoperative CSF caspase-3 levels suggests a possible role for general anesthesia in neuroresuscitation by slowing the neuronal apoptotic pathway.
Journal of Neurosurgical Anesthesiology, 2019
Background: General anesthesia has been associated with neuronal apoptosis and activation of caspases. Apoptosis is a crucial factor in early brain injury following aneurysmal subarachnoid hemorrhage (aSAH). We conducted a double-blind, prospective, randomized pilot study to evaluate the effect of 4 anesthetic agents on cerebrospinal fluid (CSF) and serum caspase-3 levels in aSAH patients. Materials and Methods: A total of 44 good-grade aSAH patients with preoperative lumbar drain scheduled for surgical clipping or endovascular coiling were randomized to receive maintenance of anesthesia with propofol, isoflurane, sevoflurane, or desflurane. Caspase-3 levels were measured in CSF and serum samples collected at baseline, 1 hour after induction, and 1 hour after cessation of anesthesia. Results: Compared with baseline, there was a decrease in CSF caspase-3 levels and an increase in serum caspase-3 levels 1 hour after exposure to all 4 anesthetic agents; levels returned to baseline valu...
Anesthesiology, 2005
Background Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. Methods Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. Results Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a ...
Serum caspase-3 levels and mortality are associated in patients with severe traumatic brain injury
BMC neurology, 2015
Different apoptosis pathways activate caspase-3. In a study involving 27 patients with traumatic brain injury (TBI), higher caspase-3 levels were found in contusion brain tissue resected from non-survivors than from survivors. The objective of this study was to determine whether there is an association in TBI patients between serum caspase-3 levels (thus using an easier, quicker, less expensive and less invasive procedure) and mortality, in a larger series of patients. We carried out a prospective, observational and multicenter study in six Spanish Hospital Intensive Care Units including 112 patients with severe TBI. All had Glasgow Coma Scale (GCS) scores lower than 9. Patients with an Injury Severity Score (ISS) in non-cranial aspects higher than 9 were excluded. Blood samples were collected on day 1 of TBI to measure serum caspas-3 levels. The endpoint was 30-day mortality. We found that non-surviving patients (n = 31) showed higher (p = 0.003) serum caspase-3 levels compared to ...
Evidence of caspase-3 activation in hyposmotic stress-induced necrosis
Neuroscience Letters, 2004
Primary culture of dentate gyrus was submitted to a hyposmotic stress that induces a rapid cell death that is necrosis morphologically. Surprisingly, we observed a rapid and dramatic upregulation of the active form of caspase-3 (caspase-3 a) in both neurons and glial cells. Caspase-3 a immunoreactivity appears as early as 1 min after hyposmotic treatment, when some neurons are still alive, suggesting that caspase-3 a may contribute to further necrotic cell death.
Toxicology in Vitro, 2010
Caspase-3 is a key protein involved in the classical apoptosis mechanism in neurons, as in many other cells types. In the present research, we describe the transcriptional activity of caspase-3 gene as a marker of acute toxicity in a primary culture model of rat cerebellar granule neurons (CGNs). CGNs were incubated for 16 h in complete medium containing the chemicals at three concentrations (10, 100 lM and 1 mM). A total of 48 different compounds were tested. Gene transcriptional activity was determined by low-density array assays, and by single Taqman caspase-3 assays. Results from the PCR arrays showed that the caspase-3 gene was up-regulated when CGNs were exposed to neurotoxic chemicals. Significative correlations were found between the transcriptional activity of caspase-3 and the activity of some other genes related to apoptosis, cell-cycle and ROS detoxification. In our experiments, acute exposure of CGNs to well-documented pro-apoptotic xenobiotics modulated significantly caspase-3 gene expression, whereas chemicals not related to apoptosis did not modify caspase-3 gene expression. In conclusion, acute exposure of CGNs to neurotoxic compounds modulates the transcriptional activity of genes involved in the classical apoptotic pathway, oxidative stress and cell-cycle control. Transcriptional activity of caspase-3 correlates significantly with these changes and it could be a good indicator of acute neurotoxicity.
Activation and Cleavage of Caspase3 in Apoptosis Induced by Experimental Cerebral Ischemia
1998
We examined the expression, activation, and cellular localization of caspase-3 (CPP32) using immunohistochemistry, immunoblots, and cleavage of the fluorogenic substrate N-benzyloxycarbonyl-Asp- in adult mouse brain after temporary (2 hr) middle cerebral artery occlusion produced by filament insertion into the carotid artery. Immunoreactive caspase-3p32 but not its cleavage product caspase-3p20 was constitutively expressed in neurons throughout brain and was most prominent in neuronal perikarya within piriform cortex. Caspase-like enzyme activity was elevated in brain homogenate 0-3 hr after reperfusion and reached a peak within 30 to 60 min. Caspase-3p20 immunoreactivity became prominent in neuronal perikarya within the middle cerebral artery territory at the time of reperfusion and on immunoblots 1-12 hr later. DNA laddering (agarose gels) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL)stained cells were detected 6-24 hr after reperfusion. At 12-24 hr, immunoreactive p20 was visualized in TUNEL-positive cells, a finding also observed in apoptotic mouse cerebellar granule cells on postnatal day 5. Together, these observations suggest the existence of a time-dependent evolution of ischemic injury characterized by the close correspondence between caspaselike enzyme activation and an associated increase in immunoreactive product (caspase-3p20) beginning at or before reperfusion and followed several hours later by morphological and biochemical features of apoptosis.
Journal of Trauma and Acute Care Surgery, 2018
; on behalf of the Canadian Critical Care Translational Biology Group (CCCTBG) BACKGROUND: Multiple organ failure can develop after hemorrhagic shock (HS). Uric acid (UA) is released from dying cells and can be proinflammatory. We hypothesized that UA could be an alternative mediator of organ apoptosis and inflammation after HS. METHODS: Ventilated male Wistar rats were used for the HS model. Two durations of shock (5 minutes vs. 60 minutes) were compared, and shams were instrumented only; animals were resuscitated and observed for 24 hours/72 hours. Caspases-(8/3), myeloperoxidase (MPO), TNF-α were measured in lungs and kidneys. Plasma UA and cytokine (IL-1β, IL-18, TNF-α) were measured. A second set of animals were randomized to vehicle versus Rasburicase intraperitoneal intervention (to degrade UA) during resuscitation. Another group received exogenous UA intraperitoneally without HS. Measures mentioned above, in addition to organs UA, were performed at 24 hours. In vitro, caspases-(8/3) activity was tested in epithelial cells exposed to UA. RESULTS: Hemorrhagic shock increased organ (kidney and lung) TNF-α, MPO, and caspases activity in various patterns while caspase-8 remained elevated over time. Hemorrhagic shock led to increased plasma UA at 2 hours, which remained high until 72 hours; TNF-α and IL-18 were elevated at 24 hours. The exogenous UA administration in sham animals reproduced the activation of caspase-8 and MPO in organs, and TNF-α in the lung. The increased plasma and organ UA levels, plasma and lung TNF-α, as well as organ caspase-(8/3) and MPO, observed at 24 hours after HS, were prevented by the administration of Rasburicase during resuscitation. In vitro, soluble UA induced caspases-(3/8) activity in epithelial cells. CONCLUSION: Uric acid is persistently high after HS and leads to the activation of caspases-8 and organ inflammation; these can be prevented by an intervention to degrade UA. Therefore, UA is an important biomarker and mediator that could be considered a therapeutic target during HS resuscitation in human. (
Neuroscience, 2002
AbstractöIn the present study, we evaluated the time-course of caspase-3 activation, and the evolution of cell death following focal cerebral ischemia produced by transient middle cerebral artery occlusion in rats. Ischemia-induced active caspase-3 immunoreactivity in the striatum but not the cortex at 3 and 6 h time points post-reperfusion. Furthermore, using a novel approach to visualize enzymatic activity, vC-APP, a C-terminal cleavage product of APP generated by caspase-3, was found to immunolocalize to the same areas as active caspase-3. Double-labeling studies demonstrated colocalization of these two proteins at the cellular level. Further double-labeling experiments revealed that active caspase-3 was con¢ned to neuronal cells which were still viable and thus immunoreactive for NeuN. DNA fragmentation, assessed histologically by terminal dUTP nick-end labeling (TUNEL), was observed in a small number of cells in the striatum as early as 3 h, but only began to appear in the cortex by 6 h. DNA fragmentation was progressive, and by 24 h postreperfusion, large portions of both the striatum and cortex showed TUNEL positive cells. However, double-labeling of active caspase-3 with TUNEL showed only minimal co-localization at all time-points. Thus, caspase-3 activation is an event that appears to occur prior to DNA fragmentation. As a con¢rmation of the histological TUNEL data, 24 h ischemia also induced the generation of nucleosome fragments, evidenced by cell death enzyme-linked immunosorbent assay. Using a novel ischemia-induced substrate cleavage biochemical approach, spectrin P120 fragment, a caspase-speci¢c cleavage product of alpha II spectrin, a cytoskeletal protein, was shown to be elevated by western blotting. Brain concentrations of both nucleosomes and spectrin P120 correlate with the degree of injury previously assessed by triphenyltetrazolium chloride staining and infarct volume calculation. Together, our ¢ndings suggest a possible association between caspase-3 activation and ischemic cell death following middle cerebral artery occlusion brain injury.