Editorial: Studying the Biology of Aquatic Animals Through Calcified Structures (original) (raw)

Trace Element Patterns in Otoliths: The Role of Biomineralization

Reviews in Fisheries Science & Aquaculture, 2020

Otolith chemistry has gained increasing attention as a tool for analyzing various aspects of fish biology, such as stock dynamics, migration patterns, hypoxia and pollution exposure, and connectivity between habitats. While these studies often assume otolith elemental concentrations reflect environmental conditions, physiological processes are increasingly recognized as a modulating and/or controlling factor. In particular, biomineralization – the complex, enzyme-regulated construction of CaCO3 crystals scaffolded by proteins – is believed to play a critical role in governing otolith chemical patterns. This review aims to summarize knowledge on otolith composition and biophysical drivers of biomineralization, present hypotheses on how biomineralization should affect element incorporation, and test the validity thereof with selected case studies. We assume that tracers of environmental history will be dominated by elements that substitute for Ca during crystal growth or that occur randomly trapped within the crystal lattice. Strontium (Sr) and barium (Ba) largely comply with the biomineralization-based hypotheses that otolith element patterns reflect environmental concentrations, without additional effects of salinity, but can be influenced by physiological processes, typically exhibiting decreasing incorporation with increasing growth. Conversely, we assume that tracers of physiology are elements under physiological control and primarily occur protein-bound in the otolith’s organic matrix. Physiological tracers are hypothesized to reflect feeding rate and/or growth, decrease with fish age, and exhibit minimal influence of environmental concentration. Candidate elements phosphorus (P), copper (Cu) and zinc (Zn) confirm these hypotheses. Magnesium (Mg) is believed to be randomly trapped in the crystal structure and hence a candidate for environmental reconstruction, but the response to all examined drivers suggest Mg to be coupled to growth. Manganese (Mn) substitutes for Ca, but is also a co-factor in matrix proteins, and therefore exhibits otolith patterns reflecting both environmental (concentration and salinity) and physiological (ontogeny and growth) histories. A consistent temperature response was not evident across studies for either environmental or physiological tracers, presumably attributable to variable relationships between temperature and fish behavior and physiology (e.g. feeding rate, reproduction). Biomineralization thus has a controlling effect on otolith element concentrations for elements that are linked with somatic growth, but not for elements that substitute for Ca in the crystal lattice. Interpretation of the ecological significance of patterns from field samples therefore need to consider the impact of the underlying biomineralization processes of the element in question as well as physiological processes regulating the availability of ions for inclusion in the growing crystal lattice. Such understanding will enhance the utility of this technique to address fisheries management questions.

Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry

Ecological Monographs, 2017

Biogeochemical tracers found in the hard parts of organisms are frequently used to answer key ecological questions by linking the organism with the environment. However, the biogeochemical relationship between the environment and the biogenic structure becomes less predictable in higher organisms as physiological processes become more complex. Here, we use the simultaneous combination of biogeochemical tracers and fish growth analyzed with a novel modeling framework to describe physiological and environmental controls on otolith chemistry in an upwelling zone. First, we develop increasingly complex univariate mixed models to describe and partition intrinsic (age effects) and extrinsic (environmental parameters) factors influencing fish growth and otolith element concentrations through time. Second, we use a multivariate mixed model to investigate the directionality and strength between element-to-element and growth relationships and test hypotheses regarding physiological and environmental controls on element assimilation in otoliths. We apply these models to continuous element (Na, Sr, Mg, Ba, Li) and growth increment profiles (monthly resolution over 17 years) derived from otoliths of reef ocean perch (Helicolenus percoides), a wild-caught, site-attached, fully marine fish. With a conceptual model, we hypothesize that otolith traits (elements and growth) driven by environmental conditions will correlate both within an otolith, reflecting the time dependency of growth and element assimilation, and among individuals that experience a similar set of external conditions. We found some elements (Sr:Ca and Na:Ca) are mainly controlled by physiological processes, while other elements (Ba:Ca and Li:Ca) are more environmentally influenced. Within an individual fish, the strength and direction of correlation varies among otolith traits, particularly those under environmental control. Correlations among physiologically regulated elements tend to be stronger than those primarily controlled by environmental drivers. Surprisingly, only Ba:Ca and growth are significantly correlated among individuals. Failure to appropriately account Accepted Article This article is protected by copyright. All rights reserved. for intrinsic effects (e.g. age) led to inflated estimates of among individual correlations and a depression of within individual correlations. Together, the lack of among-individual correlations of otolith traits in properly formulated models and the biases that can be introduced by not including appropriate intrinsic covariates suggest that caution is needed when assuming multi-elemental signatures are reflective solely of shared environments.

Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish

Environmental Biology of Fishes, 2010

Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish Abstract The potential for environmental and physiological modification of elemental incorporation in otoliths is significant and must be validated before otoliths can be used reliably to estimate water parameters over the life history of a fish. We experimentally manipulated temperature and diet quantity for juvenile, sub-adult, and adult Acanthochromis polyacanthus, a tropical damselfish of the SW Pacific. Significant interactive effects between life history stage, temperature and food quantity were observed for otolith Ba/Ca, while significant interactions between stage and food were observed for Sr/ Ca. Specific growth rates were negatively correlated with D Ba and D Sr for juveniles and sub-adults. These interactions indicated elemental incorporation dynamics varied depending on the life history stage, suggesting variation in effects of stage-specific metabolism or reproductive status. Our results highlight complex responses of elemental incorporation to both endogenous and exogenous factors. Interpretations of life history transects across otoliths must account for these effects to avoid confounding environmental variability with ontogenetic changes in physiology.

Multimetal accumulation in crustaceans in surface water related to body size and water chemistry

Environmental Toxicology and Chemistry, 2012

Many relationships of bioaccumulation of metals have been derived in the past, but verification in the field is often lacking. In the present study, the authors collected field data on bioaccumulation in caged Daphnia magna and Gammarus roeseli in 12 different contaminated brooks. Besides generating a comprehensive data set on bioaccumulation for these species, the authors also checked whether the bioavailability at the biotic ligand is useful to explain differences in observed bioaccumulation. Increasing bioaccumulation of Mn, Cd, Co, and Ni was observed, which leveled off at higher concentrations. Whole-body concentrations of Ca, Na, Mg, K, Fe, Cu, Se, and Zn were independent of exposure concentrations. Univariate and multivariate regressions were performed to examine the relationships between accumulated metals and dissolved metal concentrations (C w ), fractional occupancy of the biotic ligand ( f BL ), species weight, and other undefined species traits. Significant relations between body weight and bioaccumulation were found for Na, Fe, Mn, Cd, Co, and Zn; smaller organisms accumulated larger amounts of these elements. Reduced body weight was accompanied by elevated concentrations of Co, Cu, and Fe in D. magna and elevated concentrations of Mn in G. roeseli, indicating toxicity. Although significant relations were found between bioaccumulation and f BL for Mn and Co, C w was a better predictor of bioaccumulation. Environ.

A field experiment testing for correspondence between trace elements in otoliths and the environment and for evidence of adaptation to prior habitats

Estuaries, 2005

Site-specific variation in the trace element composition of fish otoliths can be used to identify fish to source, but the mechanisms controlling elemental composition are poorly understood. Environmental influences on the deposition of barium (Ba), copper (Cu), manganese (Mn), and strontium (Sr) in the otoliths of mudsuckers (Gillichthys mirabilis) were tested using a reciprocal field transplant experiment, in which fish from 3 estuaries were transplanted to each of the 3 estuaries. Fish originating from the 3 estuaries showed no differences in otolith chemistry that might reflect acclimation to past conditions in their home estuary or genetic differences among populations, which simplifies the interpretation of otolith chemistry. Cu and Mn concentrations in otoliths differed according to the site of transplant. Cu in otoliths showed the same pattern of difference among estuaries as did Cu in sediments, but there was no correspondence between Cu in otoliths and dissolved Cu. Ranked differences among estuaries in otolith Mn matched the ranking of estuary-specific differences in dissolved Mn, and there was no correspondence between the concentration of Mn in otoliths and sediments. Fish transplanted to different estuaries showed no differences in otolith concentrations of Ba or Sr, and the concentrations of Ba and Sr in the water column showed a similar lack of difference among estuaries. This study provides field evidence supporting the conclusion that the elemental composition of otoliths reflects environmental conditions to which fish have been recently exposed, but whether that correlation is with trace elements in the sediment or water column can vary.

Effects of crystal structure on the uptake of metals by lake trout ( Salvelinus namaycush ) otoliths

Canadian Journal of Fisheries and Aquatic Sciences, 2005

This is the first study to report spectroscopic and elemental analysis of aragonite and vaterite growing simultaneously and separately in both the core and the edges of the same otolith. Our investigations focused on understanding differential trace metal uptake, including the influence of the metal itself (i.e., ionic radii), the crystalline structure, and the development state of the fish. Chemistry and crystal structure of sagittal otoliths from lake trout (Salvelinus namaycush) were studied using laser ablation combined with inductively coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectroscopy, respectively. Analyses of the composition of vaterite and aragonite growing in the same growth ring show that smaller cations like Mg (0.86 Å) (1 Å = 0.1 nm) and Mn (0.81 Å) were more abundant in the vaterite hexagonal crystal structure, whereas larger cations such as Sr (1.32 Å) and Ba (1.49 Å) were preferentially incorporated in aragonite (orthorhombic). Similarly, the copreci...

Application of Calcified Structures in Fish as Indicators of Metal Exposure in Freshwater Ecosystems

Environments, 2022

Although there are common and well-established bioindicator organisms and tissues, there is still a need for reliable and sensitive bioindicators in aquatic environments. In the present pilot study, calcified structures in fish were applied as indicators of metal exposure in combination with commonly used fish soft tissues and intestinal parasites, therefore comprising short- and long-term indicators. Patterns of metal accumulation and distribution in soft (muscle, liver) and hard (scales, otoliths) tissues of brown trout (Salmo trutta Linnaeus, 1758) and their intestinal parasites, acanthocephalans (Dentitruncus truttae Sinzar, 1955), from the Krka River influenced by industrial and municipal wastewaters were estimated and compared. Most elements had higher levels in acanthocephalans, scales and liver than muscle and otoliths, possibly reflecting differences in metal uptake routes, tissue function and metabolic activity. Despite the recorded differences in metal contents, all appli...