Biomechanical testing of different posterior fusion devices on lumbar spinal range of motion (original) (raw)
Related papers
Spine Journal, 2006
BACKGROUND CONTEXT: Current surgical trends increasingly emphasize the minimization of surgical exposure and tissue morbidity. Previous research questioned the ability of unilateral pedicle screw instrumentation to adequately stabilize posterior fusion constructs. No study to date has addressed the effects of reduced posterior instrumentation mass on interbody construct techniques. Unilateral surgical exposure for transforaminal lumbar interbody fusion (TLIF) allows ipsilateral pedicle screw placement. Theoretically, percutanous contralateral facet screw placement could provide supplemental construct support without additional surgical exposure. PURPOSE: Identify the biomechanical effects of reduced spinal fusion instrumentation mass on interbody construct stability. STUDY DESIGN: An in vitro biomechanical study using human lumbar spines comparing stability of TLIF constructs augmented by: (1) bilateral pedicle screw fixation, (2) unilateral pedicle screw fixation, or (3) a novel unilateral pedicle screw fixation supplemented with contralateral facet screw construct. METHODS: Seven fresh frozen human cadaveric specimens were tested in random construct order in flexion/extension, lateral bending, and axial rotation using 65.0 Nm torques and 50 N axial compressive loads. Analysis of torque rotation curves determined construct stability. Using paired statistical methods, comparison of construct stiffness and total range of motion within each specimen were performed using the Wilcoxon signed ranks test with a Holm-Sidák multiple comparison procedure (a 5 0.05). RESULTS: In flexion/extension, lateral bending, and axial rotation, there were no measurable differences in either stiffness or range of motion between the standard bilateral pedicle screw and the novel construct after TLIF. After TLIF, the unilateral pedicle screw construct provided only half of the improvement in stiffness compared with bilateral or novel constructs and allows for significant off-axis rotational motions, which could be detrimental to stability and the promotion for fusion. CONCLUSIONS: All tested TLIF constructs with posterior instrumentation decreased segmental range of motion and increased segmental stiffness. While placing unilateral posterior instrumentation decreases overall implant bulk and dissection, it allows for signficantly increased segmental range of motion, less stiffness, and produces off-axis movement. The technique of contralateral facet screw placement provides the surgical advantages of unilateral pedicle screw placement with stability comparable to TLIF with bilateral pedicle screws. Ó
Spine Journal, 2011
BACKGROUND CONTEXT: Spinal fusion is a commonly performed surgical procedure. It is used to treat a variety of spinal pathologies, including degenerative disease, trauma, spondylolisthesis, and deformities. A mechanically stable spine provides an ideal environment for the formation of a fusion mass. Instrumented spinal fusion allows early ambulation with minimal need for a postoperative external immobilizer. Several biomechanical and clinical studies have evaluated the stability offered by different posterior instrumentation techniques and the effects of reduced instrumentation. PURPOSE: The aim of the study was to compare the biomechanics of a novel pedicle and translaminar facet screw (TLFS) construct. Also, in this study, comparisons were made with the more common pedicle screw/TLFS constructs for posterior fixation. STUDY DESIGN: Human cadaveric lumbar spines were tested in an in vitro flexibility experiment to investigate the biomechanical stability provided by a novel pedicle and TLFS construct after transforaminal lumbar interbody fusion (TLIF). METHODS: Seven fresh human lumbar spines (L2-L5) were tested by applying pure moments of 68 Nm. After intact specimen testing, a left-sided TLIF with a radiolucent interbody spacer was performed at L3-L4. Each specimen was then tested for the following constructs: bilateral pedicle screws (BPS) and rods at L3-L4; unilateral pedicle screws (UPS) and rods at L3-L4; UPS and rods and TLFS at L3-L4 (UPSþTLFS); and unilateral single pedicle screw and TLFS and rod at L3-L4 (V construct). The L3-L4 range of motion (ROM) and stiffness for each construct were obtained by applying pure moments in flexion, extension, lateral bending, and axial rotation. RESULTS: All instrumented constructs significantly reduced ROM in flexion-extension and lateral bending compared with the intact specimen. In axial rotation, only BPS constructs significantly reduced ROM compared with intact specimen. The V construct was able to achieve more reduction in ROM compared with UPS construct and was comparable to UPSþTLFS construct. Unilateral pedicle screws construct was the least stable in all loading modes and was significantly different than BPS construct in lateral bending. CONCLUSIONS: The V construct exhibited enhanced stability compared with UPS construct in all loading modes. It provides bilateral fixation and preserves the anatomic integrity of the superior facet joint. The novel construct may offer advantages of less invasiveness, significant reduction in operation time, duration of hospitalization, and costs of implants, which would require further clinical evaluation. Ó
BioMed Research International
Study Design. Cadaveric biomechanical study. Objectives. To compare the biomechanical stability of two-level PLIF constructs with unilateral and bilateral pedicle screw fixations. Methods. Six cadaveric lumbar segments were evaluated to assess biomechanical stability in response to pure moment loads applied in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Each specimen was tested in six sequential configurations: (1) intact baseline; (2) facetectomy; (3) unilateral pedicle screws (UPS); (4) bilateral pedicle screws (BPS); (5) unilateral pedicle screws and cage (UPSC); and (6) bilateral pedicle screws and cage (BPSC). Results. Significant reductions in motion were observed when comparing all instrumented conditions to the intact and facetectomy stages of testing. No significant differences in motion between UPS, BPS, UPSC, or BPSC were observed in response to FE range of motion (ROM) or neutral zone (NZ). ROM was significantly higher in the UPS stage compared...
BioMedical Engineering OnLine
Background Posterior pedicle screw (PS) fixation, a common treatment method for widespread low-back pain problems, has many uncertain aspects including stress concentration levels, effects on adjacent segments, and relationships with physiological motions. A better understanding of how posterior PS fixation affects the biomechanics of the lumbar spine is needed. For this purpose, a finite element (FE) model of a lumbar spine with posterior PS fixation at the L4–L5 segment level was developed by partially removing facet joints (FJs) to imitate an actual surgical procedure. This FE study aimed to investigate the influence of the posterior PS fixation system on the biomechanics of the lumbar spine before and after fusion by determining which physiological motions have the most increase in posterior instrumentation (PI) stresses and FJ loading. Results It was determined that posterior PS fixation increased FJ loading by approximately 35% and 23% at the L3–L4 adjacent level with extensio...
Spine, 2007
Study Design. Biomechanical in vitro human cadaveric lumbar flexibility testing with 6 sequential treatments. Objective. To compare the range of motion (ROM) of dynamic one-level posterior stabilization constructs to one-level rigid rod fixation constructs and to study the effects of extending the posterior construct to the adjacent superior level. Summary of Background Data. Patients experiencing pain and biomechanical instability at one level may also present with radiographic or other indicators of early degeneration at an adjacent level. Clearly, fusion would be warranted at the symptomatic level, but the treatment plan for the adjacent level remains controversial. Additionally, the effects on adjacent motion segments above a fusion level are currently not well understood. Methods. Thirteen fresh frozen human cadaveric lumbar spines (L1-L5) were tested in 6 modes of loading: 3 were randomized to dynamic posterior stabilization constructs and 7 to a rigid rod pedicle screw system. Each group was subjected to 6 treatments. Results. When comparing the instrumented treatments, only Treatment 6, two-level hybrid constructs, exhibited a statistically significant effect in flexion-extension bending at L2-L3 between the posterior dynamic system and rigid rod fixation (P ϭ 0.014). Conclusion. ROM at the superior adjacent level (L2-L3) demonstrated no significant difference between intact, destabilized, one-level posterior fixation, and one-level circumferential fusion at the index level (L3-L4) when comparing posterior dynamic stabilization to rigid rod fixation. However, ROM at the superior adjacent level (L2-L3) was significantly greater for lateral bending and axial rotation when both levels (L2-L3 and L3-L4) were stabilized with a dynamic stabilization system. When the functional spinal units were instrumented with a two-level hybrid construct, two-level posterior instrumentation (L2-L3 and L3-L4) with a cage at the index level (L3-L4), all bending modes generated significantly greater ROM for the dynamic stabilization group at L2-L3 compared with rigid rod fixation.
Clinical biomechanics (Bristol, Avon), 2014
This investigation compares an interspinous fusion device with posterior pedicle screw system in a lateral lumbar interbody lumbar fusion. We biomechanically tested six cadaveric lumbar segments (L1-L2) under an axial preload of 50N and torque of 5Nm in flexion-extension, lateral bending and axial rotation directions. We quantified range of motion, neutral zone/elastic zone stiffness in the following conditions: intact, lateral discectomy, lateral cage, cage with interspinous fusion, and cage with pedicle screws. A complete lateral discectomy and annulectomy increased motion in all directions compared to all other conditions. The lateral cage reduced motion in lateral bending and flexion/extension with respect to the intact and discectomy conditions, but had minimal effect on extension stiffness. Posterior instrumentation reduced motion, excluding interspinous augmentation in axial rotation with respect to the cage condition. Interspinous fusion significantly increased flexion and e...
Computer Methods in Biomechanics and Biomedical Engineering, 2014
Dynamic stabilization in a degenerate symptomatic spine may be advantageous compared with conventional fusion procedures, as it helps preserve motion and minimizes redistribution of loads at instrumented and adjacent segments. This article presents a systematic review of biomechanical and clinical evidence available on some of the pedicle screw based posterior dynamic stabilization (PDS) devices. Using Medline, Embase, and Scopus online databases, we identified four pedicle-screw-PDS devices for which both, biomechanical testing and clinical follow-up data are available: Graf artificial ligaments, Isobar TTL, Polyetheretherketone rods, and Dynesys. The current state-ofthe-art of pedicle-screw-PDS devices is far from achieving its desired biomechanical efficacy, which has resulted in a weak support for the posited clinical benefits. Although pedicle-screw-PDS devices are useful in salvaging a moderately degenerate functionally suboptimal disc, for severe disc degeneration cases fusion is still the preferred choice. We conclude that a pedicle-screw-PDS device should aim at restoring load sharing amongst spinal elements while preserving the qualitative and quantitative nature of spinal motion, especially minimize posterior shift of the helical axis of motion. More precise and objective assessment techniques need to be standardized for in vivo evaluation of intervertebral motion and load sharing amongst spinal elements across different pedicle-screw-PDS devices. V C 2013
Biomechanical Analysis and Review of Lateral Lumbar Fusion Constructs
Spine, 2010
Study Design. Biomechanical study and the review of literature on lumbar interbody fusion constructs. Objective. To demonstrate the comparative stabilizing effects of lateral interbody fusion with various supplemental internal fixation options. Summary of Background Data. Lumbar interbody fusion procedures are regularly performed using anterior, posterior, and more recently, lateral approaches. The biomechanical profile of each is determined by the extent of resection of local supportive structures, implant size and orientation, and the type of supplemental internal fixation used. Methods. Pure moment flexibility testing was performed using a custom-built 6 degree-of-freedom system to apply a moment of Ϯ7.5 Nm in each motion plane, while motion segment kinematics were evaluated using an optoelectronic motion system. Constructs tested included the intact spine, stand-alone extreme lateral interbody implant, interbody implant with lateral plate, unilateral and bilateral pedicle screw fixation. These results were evaluated against those from literature-reported biomechanical studies of other lumbar interbody constructs. Results. All conditions demonstrated a statistically significant reduction in range of motion (ROM) as a percentage of intact. In flexion-extension, ROM was 31.6% standalone, 32.5% lateral fixation, and 20.4% and 13.0% unilateral and bilateral pedicle screw fixation, respectively. In lateral bending, the trend was similar with greater reduction with lateral fixation than in flexion-extension; ROM was 32.5% stand-alone, 15.9% lateral fixation, and 21.6% and 14.4% unilateral and bilateral pedicle screw fixation. ROM was greatest in axial rotation; 69.4% stand-alone, 53.4% lateral fixation, and 51.3% and 41.7% unilateral and bilateral pedicle screw fixation, respectively. Conclusion. The extreme lateral interbody construct provided the largest stand-alone reduction in ROM compared with literature-reported ALIF and TLIF constructs. Supplemental bilateral pedicle screw-based fixation provided the overall greatest reduction in ROM, similar among all interbody approach techniques. Lateral fixation and unilateral pedicle screw fixation provided intermediate reductions in ROM. Clinically, surgeons may evaluate these comparative results to choose fixation options commensurate with the stability requirements of individual patients.
Journal of Medical and Biological Engineering
Purpose Lumbar posterior instrumentation for facet stabilization has become popular for the treatment of lumbar instability. The present study investigated and compared facet stabilization following lumbar posterior instrumentation with facet spacers and facet screws using porcine lumbar spines. Methods Eighteen L5–L6 lumbar motion units (LMUs) of the porcine spines were randomly divided into three groups (un-instrumented, facet-spacer and facet-screw). In the un-instrumented group (control), all ligamentous structures were preserved. In the facet-spacer group, two facet spacers were inserted into the joint spaces of the bilateral upper and lower facets. In the facet-screw group, two cannulated screws were used to transfix the bilateral upper and lower facets. With the use of a material testing machine, a gradually increasing moment of up to 6000 N-mm was generated in flexion, extension, lateral bending and torsion motions to compare facet stabilization among the groups. Results The...