Earth ’ s Future Climate-driven exceedance of total ( wet + dry ) nitrogen ( N ) + sulfur ( S ) deposition to forest soil over the conterminous U (original) (raw)
Related papers
Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation
Global Biogeochemical Cycles, 2006
We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NO y , NH x) and sulfate (SO x) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60-70% of the model-calculated wet deposition rates agree to within ±50% with quality-controlled measurements. Models systematically overestimate NH x deposition in South Asia, and underestimate NO y deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NO y , NH x , and SO x , leading to ±1 s variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36-51% of all NO y , NH x , and SO x is deposited over the ocean, and 50-80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the world's natural vegetation receives nitrogen deposition in excess of the ''critical load'' threshold of 1000 mg(N) m À2 yr À1. The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia
Exceedance of critical loads of nitrogen and sulphur and its relation to forest conditions
European Journal of Forest Research, 2005
The calculation of critical loads and their exceedance is one method to describe the vulnerability of forests to environmental stress caused by anthropogenic impact. Exceedance of critical loads for acidifying inputs and nitrogen was compared to different indicators of the soil and forest conditions in the German part of the extensive forest monitoring (ICP Forests/EU Level I), including more than 1,800 plots. In addition, an empirical relationship between the C/N ratio of the forest floor humus layer (C/N Humus) and the estimated nitrogen output for ten plots of the intensive monitoring (ICP Forests/EU Level II) was established in order to estimate the potential nitrogen output on Level I plots dominated by Norway spruce. Regarding all tree species assessed, the exceedance of critical loads for nitrogen and sulphur is negatively correlated with pH and base saturation up to 30 cm soil depth. The sulphur deposition and the exceedance of critical loads are highly correlated with the sulphur content of leaves and needles, whereas the respective relations for nitrogen were lower. The crown condition was weakly positively related to the sulphur content in tree leaves and needles. For Norway spruce sites, high exceedance of critical loads for nitrogen and nitrogen deposition corresponded well with low C/N Humus. In regions with high nitrogen load and low C/N ratios in the humus layer, the calculated nitrogen output was high. The results support the concept of critical thresholds in that way that their exceedance can impair forest ecosystem functions like nitrogen retention.
Water Air and Soil Pollution, 2008
A critical load data base was developed for Europe and Northern Asia using the latest data bases on soils, vegetation, climate and forest growth. Critical loads for acidity and nutrient nitrogen for terrestrial ecosystems were computed with the Simple Mass Balance model. The resulting critical loads are in accordance with critical loads from previous global empirical studies, but have a much higher spatial resolution. Critical loads of acidity are sensitive to both the chemical criterion and the critical limit chosen. Therefore a sensitivity analysis of critical loads was performed by employing different chemical criteria. A critical limit based on an acid neutralizing capacity (ANC) of zero resulted in critical loads that protect ecosystems against toxic concentrations of aluminium and unfavourable Al/Bc ratios, suggesting that ANC could be an alternative to the commonly used Al/Bc ratio. Critical loads of nutrient nitrogen are sensitive to the specified critical nitrate concentration, especially in areas with a high precipitation surplus. If limits of 3-6 mg N l −1 are used for Western Europe instead of the widely used 0.2 mg N l −1 , critical loads double on average. In low precipitation areas, the increase is less than 50%. The strong dependence on precipitation surplus is a consequence of the simple modelling approach. Future models should explore other nitrogen parameters (such as nitrogen availability) instead of leaching as the factor influencing vegetation changes in terrestrial ecosystems.
Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition
Global Change Biology, 2011
Sulphur (S) and nitrogen (N) deposition are important drivers of the terrestrial carbon (C) and N cycling. We analyzed changes in C and N pools in soil and tree biomass at a highly acidified spruce site in the Czech Republic during a 15 year period. Total S deposition decreased from 5 to 1.1 g m À2 yr À1 between 1995 and 2009, whereas bulk N deposition did not change. Over the same period, C and N pools in the Oa horizon declined by 116 g C and 4.2 g N m À2 yr À1 , a total decrease of 47% and 42%, respectively. This loss of C and N probably originated from organic matter (OM) that had accumulated during the period of high acid deposition when litter decomposition was suppressed. The loss of OM from the Oa horizon coincided with a substantial leaching (1.3 g N m À2 yr À1 at 90 cm) in the 1990s to almost no leaching (<0.02 g N m À2 yr À1 ) since 2006. Forest floor net N mineralization also decreased. This had consequences for spruce needle N concentration (from 17.1 to 11.4 mg kg À1 in current needles), an increase in litterfall C/N ratio (from 51 to 63), and a significant increase in the Oi + Oe horizon C/N ratio (from 23.4 to 27.3) between 1994 and 2009/2010. Higher forest growth and lower canopy defoliation was observed in the 2000s compared to the 1990s. Our results demonstrate that reducing S deposition has had a profound impact on forest organic matter cycling, leading to a reversal of historic ecosystem N enrichment, cessation of nitrate leaching, and a major loss of accumulated organic soil C and N stocks. These results have major implications for our understanding of the controls on both N saturation and C sequestration in forests, and other ecosystems, subjected to current or historic S deposition.
Forest Ecology and Management, 2009
Changes in the Earth's atmosphere are expected to influence the growth, and therefore, carbon accumulation of European forests. We identify three major changes: (1) a rise in carbon dioxide concentration, (2) climate change, resulting in higher temperatures and changes in precipitation and (3) a decrease in nitrogen deposition. We adjusted and applied the hydrological model Watbal, the soil model SMART2 and the vegetation model SUMO2 to asses the effect of expected changes in the period 1990 up to 2070 on the carbon accumulation in trees and soils of 166 European forest plots. The models were parameterized using measured soil and vegetation parameters and site-specific changes in temperature, precipitation and nitrogen deposition. The carbon dioxide concentration was assumed to rise uniformly across Europe. The results were compared to a reference scenario consisting of a constant CO 2 concentration and deposition scenario. The temperature and precipitation scenario was a repetition of the period between 1960 and 1990. All scenarios were compared to the reference scenario for biomass growth and carbon sequestration for both the soil and the trees.