Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis (original) (raw)
Related papers
Lung fibrosis (LF) is a chronic and progressive lung disease characterized by pulmonary parenchyma progressive lesion, inflammatory infiltration, and interstitial fibrosis. It is developed by excessive collagen deposition and other cellular matrix components, resulting in severe changes in the alveolar architecture. Considering the absence of effective treatment, the aim of this study was to investigate the effect of photobiomodulation therapy (PBMT) on the development of PF. For this purpose, we used C57BL6 mice subjected to induction of LF by bleomycin administration (1.5 U/kg) by orotracheal route and, after 14 days of the induction, mice were treated with PBMT applied to the thorax 1×/day for 8 days (wavelength 660 ± 20 nm, power 100 mW, radiant exposure 5 J/cm 2 , irradiance 33.3 mW/cm 2 , spot size 2.8cm 2 , total energy 15 J, time of irradiation: 150 s) and inflammatory and fibrotic parameters were evaluated with or without PBMT. Our results showed that PBMT significantly reduced the number of inflammatory cells in the alveolar space, collagen production, interstitial thickening, and static and dynamic pulmonary elastance. In addition, we observed reduced levels of IL-6 e CXCL1/KC released by pneumocytes in culture as well as reduced level of CXCL1/KC released by fibroblasts in culture. We can conclude that the PBMT improves both inflammatory and fibrotic parameters showing a promising therapy which is economical and has no side effects.
Frontiers in Neuroscience, 2023
There is an urgent need for therapeutic approaches that can prevent or limit neuroinflammatory processes and prevent neuronal degeneration. Photobiomodulation (PBM), the therapeutic use of specific wavelengths of light, is a safe approach shown to have anti-inflammatory effects. The current study was aimed at evaluating the effects of PBM on LPS-induced peripheral and central inflammation in mice to assess its potential as an anti-inflammatory treatment. Daily, 30-min treatment of mice with red/NIR light (RL) or RL with a 40 Hz gamma frequency flicker for 10 days prior to LPS challenge showed anti-inflammatory effects in the brain and systemically. PBM downregulated LPS induction of key proinflammatory cytokines associated with inflammasome activation, IL-1β and IL-18, and upregulated the anti-inflammatory cytokine, IL-10. RL provided robust anti-inflammatory effects, and the addition of gamma flicker potentiated these effects. Overall, these results demonstrate the potential of PBM as an anti-inflammatory treatment that acts through cytokine expression modulation.
Photobiomodulation therapy reduces acute pain and inflammation in mice
Journal of Photochemistry and Photobiology B-biology, 2019
Photobiomodulation (PBM) is a therapy suggested for the treatment of pain and inflammation. Different mechanisms have been proposed to explain the analgesic and inflammatory effects of photobiomodulation, but there are still gaps on the mechanisms underlying. The objective was to investigate the analgesic and anti-inflammatory effect of red LED, as well as to investigate the possible mechanism of action in acute nociception models. Radiation was applied with red LED (660nm, 215mW, 84.64mW/cm², 2.531J/cm² (30s); 5.07J/cm 2 (60s) 7.61J/cm² (90s) and 10.15J/cm² (120s)). The red LED applied 60 seconds before the experiments, promoted reduction of
Background There is an urgent need for therapeutic approaches that can prevent or limit neuroinflammatory processes and prevent neuronal degeneration. Photobiomodulation (PBM), the therapeutic use of specific wavelengths of light, is a safe approach shown to have anti-inflammatory effects. The current study was aimed at evaluating the effects of PBM on LPS-induced peripheral and central inflammation in mice to assess the potential of PBM as an anti-inflammatory treatment. Methods Effects of PBM were evaluated in group-housed C57BL/6J mice. Mice were divided into three groups: (a) a control group receiving no PBM, (b) a group receiving PBM utilizing red/NIR light at 640 and 880 nm (RL), and (c) a group receiving RL with a 40 Hz gamma frequency flicker (RLG). PBM was administered over 12 days (5 days per week for 2 weeks; no treatment on days 6 and 7). Each PBM treatment was 30 minutes. On day 11, mice were dosed by intraperitoneal injection with either vehicle or LPS (1 mg/kg). Brain...
Photodynamic therapy induces an immune response against a bacterial pathogen
Expert Review of Clinical Immunology, 2012
Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin ® . PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to non-invasively monitor murine bacterial arthritis and found PDT with intra-articular methylene blue not only was effective, but when carried before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease. Photodynamic therapy induces an immune response against a bacterial pathogen Expert Rev. Clin. Immunol. 8(5), 00-00 (2012) Keywords: bacterial arthritis • bioluminescence imaging • methicillin-resistant Staphylococcus aureus • methylene blue • neutrophils • photodynamic therapy • Photofrin • preventative PDT A u t h o r P r o o f Expert Rev. Clin. Immunol. 8(5), (2012) 36 Kushibiki T, Tajiri T, Tomioka Y, Awazu K. Photodynamic therapy induces interleukin secretion from dendritic cells. Int. J. Clin. Exp. Med. 3(2), 110-114 (2010).
Life, 2022
Background: Recent studies evidence that blue-LED-light irradiation can modulate cell responses in the wound healing process within 24 hours from treatment. This study aims to investigate blue-light (410–430 nm) photobiomodulation used in a murine wound model within six days post-treatment. Methods: A superficial wound was made in 30 CD1 male mice. The injuries were treated with a blue LED light (20.6 J/cm2), and biopsies were collected at 24, 72, and 144 hours. Histology, fluorescence analysis, and advanced microscopy techniques were used. Results: We can observe an increase in the cellular infiltrate response, and in mast-cell density and their degranulation index correlated to the expression of the major histocompatibility complex after 24 hours. Furthermore, after six days, the vessel density increases with the expression of the platelet-derived growth factor in the mast cells. Finally, collagen deposition and morphology in the treated wounds appear more similar to unwounded skin. Conclusions: Blue-light photobiomodulation stimulates several cellular processes that are finely coordinated by mast cells, leading to more rapid wound healing and a better-recovered skin morphology.
Manual Therapy, Posturology & Rehabilitation Journal, 2019
Introduction: Drugs formulated as Resveratrol, associated with LED 627nm photobiomodulation, can increase the efficacy of active release, increased local circulation, cell proliferation and collagen synthesis, accelerating the healing process. Objective: To analyze the effects of 627nm LED photobiomodulation associated with Resveratrol on the tissue repair of induced wounds in Wistar rats. Methodology: We used 18 animals corresponding to the control groups, group LED 627nm with association to Resveratrol cream (GLed + Resv) 3 and 7 days. Results: Treatment with the use of LED associated with Resveratrol cream provided an efficient healing. In the statistical test, the significance level was observed between the groups of P <0.0156. In the multiple comparison between the pairs the Tukey's test showed significance between the groups CG vs GLed627nm + Resv 7Day. Conclusion: The GLed + Resv group showed efficient inflammatory phase of healing, promoting a greater activation of fibroblasts and remodeling of the collagen fiber when compared to the control group.