Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models (original) (raw)

Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity

Biogeosciences, 2010

Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR). We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ∼ 40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (∼ 20 − 30 years). Analysis of modelled chlorophyll and primary production from 2001-2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ∼ 2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decadeslong data record must be established if the impact of climate change on ocean productivity is to be definitively detected.

Global patterns of change and variation in sea surface temperature and chlorophyll a

Scientific reports, 2018

Changes over the scale of decades in oceanic environments present a range of challenges for management and utilisation of ocean resources. Here we investigate sources of global temporal variation in Sea Surface Temperature (SST) and Ocean Colour (Chl-a) and their co-variation, over a 14 year period using statistical methodologies that partition sources of variation into inter-annual and annual components and explicitly account for daily auto-correlation. The variation in SST shows bands of increasing variability with increasing latitude, while the analysis of annual variability in Chl-a shows mostly mid-latitude high variability bands. Covariation patterns of SST and Chl-a suggests several different mechanisms impacting Chl-a change and variance. Our high spatial resolution analysis indicates these are likely to be operating at relatively small spatial scales. There are large regions showing warming and rising of Chl-a, contrasting with regions that show warming and decreasing Chl-a...

Three Improved Satellite Chlorophyll Algorithms for the Southern Ocean

Remote sensing of Southern Ocean chlorophyll concentrations is the most effective way to detect large-scale changes in phytoplankton biomass driven by seasonality and climate change. However, the current algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, algorithm OC4v6), the Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua, algorithm OC3M) and GlobColour significantly underestimate chlorophyll concentrations at high latitudes. Here we use a long-term dataset from the Southern Ocean (20 - 160E) to develop more accurate algorithms for all three of these products in southern high latitude regions. These new algorithms improve in situ versus satellite chlorophyll coefficients of determination (r^2) from 0.27 to 0.46, 0.26 to 0.51 and 0.25 to 0.27, for OC4v6, OC3M and GlobColour, respectively, while addressing the underestimation problem. This study also revealed that pigment composition, which reflects species composition and physiology, is key to understanding the reasons for satellite chlorophyll underestimation in this region. These significantly improved algorithms will permit more accurate estimates of standing stocks and more sensitive detection of spatial and temporal changes in those stocks, with consequences for derived products such as primary production and carbon cycling.

Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide

PLoS ONE, 2013

Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major 'greenhouse gas', and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans -but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of 'the' ocean. Citation: Wernand MR, van der Woerd HJ, Gieskes WWC (2013) Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide. PLoS ONE 8(6): e63766.

Global ocean primary production trends in the modern ocean color satellite record (1998–2015)

Environmental Research Letters, 2019

Ocean primary production (PP), representing the uptake of inorganic carbon through photosynthesis, supports marine life and affects carbon exchange with the atmosphere. It is difficult to ascertain its magnitude, variability, and trends due to our inability to measure it directly at large scales. Yet it is paramount for understanding changes in marine health, fisheries, and the global carbon cycle. Using assimilation of ocean color satellite data into an ocean biogeochemical model, we estimate that global net ocean PP has experienced a small but significant decline −0.8 PgC y−1 (−2.1%) decade−1 (P

Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades

Remote Sensing

Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. One of the major challenges in this approach lies in the assignment of the appropriate model parameters that define the photosynthetic response of phytoplankton to the light field. In the present study, a global database of in situ measurements of photosynthesis versus irradiance (P-I) parameters and a 20-year record of climate quality satellite observations were used to assess global primary production and its variability with seasons and locations as well as between years. In addition, the sensitivity of the computed primary production to potential changes in the photosynthetic response of phytoplankton cells under changing environmental ...

An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI)

Sensors

Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for re...

Phenological changes of oceanic phytoplankton in the 1980s and 2000s as revealed by remotely sensed ocean-color observations

Global Biogeochemical Cycles, 2012

1] We investigated the phenology of oceanic phytoplankton at large scales over two 5-year time periods: 1979-1983 and 1998-2002. Two ocean-color satellite data archives (Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS)) were used to investigate changes in seasonal patterns of concentrationnormalized chlorophyll. The geographic coverage was constrained by the CZCS data distribution. It was best for the Northern Hemisphere and also encompassed large areas of the Indian, South Pacific, and Equatorial Atlantic regions. For each 2 pixel, monthly climatologies were developed for satellite-derived chlorophyll, and the resulting seasonal cycles were statistically grouped using cluster analysis. Five distinct groups of mean seasonal cycles were identified for each half-decade period. Four types were common to both time periods and correspond to previously identified phytoplankton regimes: Bloom, Tropical, Subtropical North, and Subtropical South. Two other mean seasonal cycles, one in each of the two compared 5-year periods, were related to transitional or intermediate states (Transitional Tropical and Transitional Bloom). Five mean seasonal cycles (Bloom, Tropical, Subtropical North, and Subtropical South, Transitional Bloom) were further confirmed when the whole SeaWiFS data set (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010) was analyzed. For 35% of the pixels analyzed, characteristic seasonal cycles of the 1979-1983 years differed little from those of the 1998-2002 period. For 65% of the pixels, however, phytoplankton seasonality patterns changed markedly, especially in the Northern Hemisphere. Subtropical regions of the North Pacific and Atlantic experienced a widespread expansion of the Transitional Bloom regime, which appeared further enhanced in the climatology based on the full SeaWiFS record (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010), and, as showed by a more detailed analysis, is associated to La Niña years. This spatial pattern of Transitional Bloom regime reflects a general smoothing of seasonality at macroscale, coming into an apparent greater temporal synchrony of the Northern Hemisphere. The Transitional Bloom regime is also the result of a higher variability, both in space and time. The observed change in phytoplankton dynamics may be related not only to biological interactions but also to large-scale changes in the coupled atmosphere-ocean system. Some connections are indeed found with climate indices. Changes were observed among years belonging to opposite phases of ENSO, though discernible from the change among the two periods and within the SeaWiFS era (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010). These linkages are considered preliminary at present and are worthy of further investigation. Citation: D'Ortenzio, F., D. Antoine, E. Martinez, and M. Ribera d'Alcalà (2012), Phenological changes of oceanic phytoplankton in the 1980s and 2000s as revealed by remotely sensed ocean-color observations, Global Biogeochem. Cycles, 26, GB4003,