Endothelium-Derived Netrin-4 Supports Pancreatic Epithelial Cell Adhesion and Differentiation through Integrins α2β1 and α3β1 (original) (raw)
Related papers
Journal of Cell Biology, 2000
Cell-cell and cell-matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that ␣ v  3 and ␣ v  5 , two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of ␣ v  3 and ␣ v  5 integrins are develop-mentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins ␣ v  3 and ␣ v  5 and their ligands to morphogenetic events in the human endocrine pancreas.
Expression and Function of αvβ3 and αvβ5 Integrins in the Developing Pancreas
The Journal of Cell Biology, 2000
Cell–cell and cell–matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that αvβ3 and αvβ5, two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of αvβ3 and αvβ5 integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion ...
1 Integrin is a Crucial Regulator of Pancreatic -Cell Expansion
Development, 2013
Development of the endocrine compartment of the pancreas, as represented by the islets of Langerhans, occurs through a series of highly regulated events encompassing branching of the pancreatic epithelium, delamination and differentiation of islet progenitors from ductal domains, followed by expansion and three-dimensional organization into islet clusters. Cellular interactions with the extracellular matrix (ECM) mediated by receptors of the integrin family are postulated to regulate key functions in these processes. Yet, specific events regulated by these receptors in the developing pancreas remain unknown. Here, we show that ablation of the β1 integrin gene in developing pancreatic β-cells reduces their ability to expand during embryonic life, during the first week of postnatal life, and thereafter. Mice lacking β1 integrin in insulin-producing cells exhibit a dramatic reduction of the number of β-cells to only ~18% of wild-type levels. Despite the significant reduction in β-cell mass, these mutant mice are not diabetic. A thorough phenotypic analysis of β-cells lacking β1 integrin revealed a normal expression repertoire of β-cell markers, normal architectural organization within islet clusters, and a normal ultrastructure. Global gene expression analysis revealed that ablation of this ECM receptor in β-cells inhibits the expression of genes regulating cell cycle progression. Collectively, our results demonstrate that β1 integrin receptors function as crucial positive regulators of β-cell expansion.
Developmental Biology, 2003
Vagal neural crest-derived precursors of the enteric nervous system colonize the bowel by descending within the enteric mesenchyme. Perpendicular secondary migration, toward the mucosa and into the pancreas, result, respectively, in the formation of submucosal and pancreatic ganglia. We tested the hypothesis that netrins guide these secondary migrations. Studies using RT-PCR, in situ hybridization, and immunocytochemistry indicated that netrins (netrins-1 and-3 mice and netrin-2 in chicks) and netrin receptors [deleted in colorectal cancer (DCC), neogenin, and the adenosine A2b receptor] are expressed by the fetal mucosal epithelium and pancreas. Crest-derived cells expressed DCC, which was developmentally regulated. Crest-derived cells migrated out of explants of gut toward cocultured cells expressing netrin-1 or toward cocultured explants of pancreas. Crest-derived cells also migrated inwardly toward the mucosa of cultured rings of bowel. These migrations were specifically blocked by antibodies to DCC and by inhibition of protein kinase A, which interferes with DCC signaling. Submucosal and pancreatic ganglia were absent at E12.5, E15, and P0 in transgenic mice lacking DCC. Netrins also promoted the survival/development of enteric crest-derived cells. The formation of submucosal and pancreatic ganglia thus involves the attraction of DCC-expressing crest-derived cells by netrins.
Diabetes, 2005
The integrin receptors play a major role in tissue morphogenesis and homeostasis by regulating cell interactions with extracellular matrix proteins. We have examined the expression pattern of integrin subunits in the human fetal pancreas (8-20 weeks fetal age) and the relevance of beta1 integrin function for insulin gene expression and islet cell survival. Its subunits alpha3, alpha5, and alpha6 beta1 integrins are expressed in ductal cells at 8 weeks, before glucagon- and insulin-immunoreactive cells bud off; their levels gradually increase in both ductal cells and islet clusters up to 20 weeks. Colocalization of alpha3, alpha5 and alpha6 beta1 integrins with endocrine cell markers was frequently observed in 8- to 20-week fetal pancreatic cells. When the beta1 integrin receptor was functionally blocked in cultured islet-epithelial clusters with a beta1 immunoneutralizing antibody or following transient beta1 integrin small interfering RNA treatment, there was inhibition of cell adh...