STEREO and Wind observations of intense cyclotron harmonic waves at the Earth's bow shock and inside the magnetosheath (original) (raw)

Abstract

We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi‐parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 mV/m peak‐peak. A comparison between the short (15 m) and long (100 m) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 m, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively co...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. Anderson, R. R., T. E. Eastman, C. C. Harvey, M. M. Hoppe, B. T. Tsurutani, and J. Etcheto (1982), Plasma waves near the magnetopause, J. Geophys. Res., 87, 2087-2107, doi:10.1029/JA087iA04p02087.
  2. Bale, S. D., P. J. Kellogg, D. E. Larson, R. P. Lin, K. Goetz, and R. P. Lepping (1998), Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes, Geophys. Res. Lett., 25, 2929-2932, doi:10.1029/98GL02111.
  3. Bale, S. D., et al. (2008), The electric antennas for the STEREO/WAVES experiment, Space Sci. Rev., 136, 529-547.
  4. Balikhin, M., S. Walker, R. Treumann, H. Alleyne, V. Krasnoselskikh, M. Gedalin, M. Andre, M. Dunlop, and A. Fazakerley (2005), Ion sound wave packets at the quasiperpendicular shock front, Geophys. Res. Lett., 32, L24106, doi:10.1029/2005GL024660.
  5. Bougeret, J.-L., et al. (1995), Waves: The radio and plasma wave investigation on the Wind spacecraft, Space Sci. Rev., 71, 231-263, doi:10.1007/BF00751331.
  6. Bougeret, J. L., et al. (2008), S/WAVES: The radio and plasma wave investigation on the STEREO mission, Space Sci. Rev., 136, 487-528, doi:10.1007/s11214-007-9298-8.
  7. Cattell, C., et al. (2008), Discovery of very large amplitude whistler- mode waves in Earth's radiation belts, Geophys. Res. Lett., 35, L01105, doi:10.1029/2007GL032009.
  8. Dimmock, A. P., M. A. Balikhin, V. V. Krasnoselskikh, S. N. Walker, S. D. Bale, and Y. Hobara (2012), A statistical study of the cross- shock electric potential at low Mach number, quasi-perpendicular bow shock crossings using Cluster data, J. Geophys. Res., 117, A02210, doi:10.1029/2011JA017089.
  9. Eastwood, J. P., S. D. Bale, F. S. Mozer, and A. J. Hull (2007), Contribu- tions to the cross shock electric field at a quasiperpendicular collisionless shock, Geophys. Res. Lett., 34, L17104, doi:10.1029/2007GL030610.
  10. Fairfield, D. H. (1974), Whistler waves observed upstream from col- lisionless shocks, J. Geophys. Res., 79, 1368-1378, doi:10.1029/ JA079i010p01368.
  11. Formisano, V., and R. Torbert (1982), Ion acoustic wave forms generated by ion-ion streams at the Earth's bow shock, Geophys. Res. Lett., 9, 207-210, doi:10.1029/GL009i003p00207.
  12. Forslund, D. W., R. L. Morse, and C. W. Nielson (1970), Electron cyclotron drift instability, Phys. Rev. Lett., 25, 1266-1270, doi:10.1103/ PhysRevLett.25.1266.
  13. Fredricks, R. W., G. M. Crook, C. F. Kennel, I. M. Green, F. L. Scarf, P. J. Coleman, and C. T. Russell (1970), OGO 5 observations of electro- static turbulence in bow shock magnetic structures, J. Geophys. Res., 75, 3751-3768, doi:10.1029/JA075i019p03751.
  14. Fuselier, S. A., and D. A. Gurnett (1984), Short wavelength ion waves upstream of the Earth's bow shock, J. Geophys. Res., 89, 91-103, doi:10.1029/JA089iA01p00091.
  15. Giagkiozis, I., S. N. Walker, and M. A. Balikhin (2011), Dynamics of ion sound waves in the front of the terrestrial bow shock, Ann. Geophys., 29, 805-811, doi:10.5194/angeo-29-805-2011.
  16. Gurnett, D. A. (1998), Principles of space plasma wave instrument design, in Measurement Techniques for Space Plasmas: Fields, Monograph 103, edited by R. Pfaff, J. Borovsky, and J. Young, pp. 121-136, AGU, Washington, D. C.
  17. Horne, R. B., and R. M. Thorne (2000), Electron pitch angle diffu- sion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions, J. Geophys. Res., 105, 5391-5402, doi:10.1029/ 1999JA900447.
  18. Hull, A. J., D. E. Larson, M. Wilber, J. D. Scudder, F. S. Mozer, C. T. Russell, and S. D. Bale (2006), Large-amplitude electrostatic waves asso- ciated with magnetic ramp substructure at Earth's bow shock, J. Geophys. Res., 33, L15104, doi:10.1029/2005GL025564.
  19. Kellogg, P. J., C. A. Cattell, K. Goetz, S. J. Monson, and L. B. Wilson III (2010), Electron trapping and charge transport by large amplitude whistlers, Geophys. Res. Lett., 372, L20106, doi:10.1029/ 2010GL044845.
  20. Kellogg, P. J., C. A. Cattell, K. Goetz, S. J. Monson, and L. B. Wilson III (2011), Large amplitude whistlers in the magnetosphere observed with Wind-Waves, J. Geophys. Res., 116, A09224, doi:10.1029/ 2010JA015919.
  21. Lepping, R. P., et al. (1995), The wind magnetic field investigation, Space Sci. Rev., 71, 207-229, doi:10.1007/BF00751330.
  22. Luhmann, J. G., et al. (2008), STEREO IMPACT investigation goals, measurements, and data products overview, Space Sci. Rev., 136, 117-184.
  23. Muschietti, L., and B. Lembège (2013), Microturbulence in the elec- tron cyclotron frequency range at perpendicular supercritical shocks, J. Geophys. Res. Space Physics, 118, 2267-2285, doi:10.1002/jgra.50224.
  24. Ogilvie, K. W., et al. (1995), SWE, A comprehensive plasma instrument for the Wind spacecraft, Space Sci. Rev., 71, 55-77, doi:10.1007/BF00751326.
  25. Papadopoulos, K. (1985), Microinstabilities and anomalous transport, in Collisionless Shocks in the Heliosphere: A Tutorial Review, vol. 34, edited by R. G. Stone and B. T. Tsurutani, pp. 59-90, AGU, Washington, D. C. Rodriguez, P., and D. A. Gurnett (1975), Electrostatic and electromagnetic turbulence associated with the Earth's bow shock, J. Geophys. Res., 80, 19-31, doi:10.1029/JA080i001p00019.
  26. Sauvaud, J.-A., et al. (2008), The IMPACT Solar Wind Electron Ana- lyzer (SWEA), Space Sci. Rev., 136, 227-239, doi:10.1007/s11214-007- 9174-6.
  27. Slavin, J. A., and R. E. Holzer (1981), Solar wind flow about the terrestrial planets. I -Modeling bow shock position and shape, J. Geophys. Res., 86, 11,401-11,418, doi:10.1029/JA086iA13p11401.
  28. Wilson, L. B., III, C. Cattell, P. J. Kellogg, K. Goetz, K. Kersten, L. Hanson, R. MacGregor, and J. C. Kasper (2007), Waves in interplan- etary shocks: A Wind/WAVES study, Phys. Rev. Lett., 99, 041101, doi:10.1103/PhysRevLett.99.041101.
  29. Wilson, L. B., III, C. A. Cattell, P. J. Kellogg, K. Goetz, K. Kersten, J. C. Kasper, A. Szabo, and M. Wilber (2010), Large-amplitude electrostatic waves observed at a supercritical interplanetary shock, J. Geophys. Res., 115, A12104, doi:10.1029/2010JA015332.
  30. Wygant, J. R., M. Bensadoun, and F. S. Mozer (1987), Electric field mea- surements at subcritical, oblique bow shock crossings, J. Geophys. Res., 92, 11,109-11,121, doi:10.1029/JA092iA10p11109.