OH and COOH functionalized single walled carbon nanotubes-reinforced alumina ceramic nanocomposites (original) (raw)
Abstract
Alumina ceramics reinforced with 1 wt.% single-walled carbon nanotube (SWCNT) were fabricated via spark plasma sintering (SPS) of composite powders containing carboxyl (COOH) or hydroxyl (OH) group functionalized single-walled carbon nanotubes. The samples were SPS'ed at 1600 8C under 50 MPa pressure for holding time of 5 min and at a heating rate of 4 8C/s. The effects of CNT addition having different surface functional groups on microstructure, conductivity, density and hardness were reported. It was shown that nanotube addition decreased the grain sizeof alumina from 3.17 mm to 2.11 mm for COOH-SWCNT reinforcement and to 2.28 mm for COOH-SWCNT reinforcement. The hardness values of the composites are similar for all samples but there is 4.5 and 7.5 times increase in electrical conductivity with respect to monolithic alumina for COOH-SWCNT and OH-SWCNT, respectively. It was also shown by TEM and FEG SEM observations that transgranular fracture behaviour of alumina was changed to mostly intergranular fracture mode by the addition of both types of CNTs which may be due to location of CNTs along the grain boundaries. A significant grain size reduction in alumina is considered toresult fromthe suppressing effect of CNTs during sintering. #
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (24)
- P. Boch, J.C. Niepce, Ceramic Materials: Process Properties and Applications, ISTE Ltd., London, 2007.
- C.A. Harper, Handbook of Ceramics Glasses and Diamonds, Mcgraw- Hill, New York, 2001.
- A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 32 (1976) 335.
- S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
- M.M. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381 (1996) 678-680.
- M.F. Yu, O. Lourie, M.J. Dyer, T.F. Kelly, S. Ruoff, Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load, Science 287 (2000), 637-641.
- A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273 (1996) 483-487.
- M.J. Biercuk, M.C. Llaguno, M. Radosavlijevic, J.K. Hyun, A.T. Johnson, Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80 (2002) 2767-2769.
- J. Cho, A.R. Boccaccini, M.S.P. Shaffer, Ceramic matrix composites containing carbon nanotubes, J. Mater. Sci. 44 (2009) 1934-1951.
- M.S.P. Shaffer, X. Fan, A.H. Windle, Dispersion and packing of carbon nanotubes, Carbon 36 (1998) 1603-1612.
- E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J.B.J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, J.L. Margrave, Salvation of fluorinated single- wall carbon nanotubes in alcohol solvents, J. Phys. Chem. B 103 (1999) 4318-4322.
- Y.T. Shieh, G.L. Liu, H.H. Wu, C.C. Lee, Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media, Carbon 45 (2007) 1880-1890.
- F. Inam, H. Yan, M.J. Reece, T. Peijs, Dimethylformamide: an effective dispersant for making ceramic-carbon nanotube composites, Nanotech- nology 19 (2008) 195710.
- D. Jiang, K. Thomson, J.D. Kuntz, J.W. Agerb, A.K. Mukherjee, Effect of sintering temperature on a single-wall carbon nanotube-toughened alumi- na-based nanocomposite, Scripta Mater. 56 (2007) 959-962.
- J.G. Santanach, A. Weibel, C. Estourne's, Q. Yang, Ch. Laurent, A. Peigney, Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth, Acta Mater. 59 (2011) 1400-1408.
- M. Meyyappan, Carbon Nanotubes: Science and Applications, CRC Press, New York, 2005.
- T. Go ´mez-del Rı ´o, P. Poza, J. Rodrı ´guez, M.C. Garcı ´a-Gutie ´rrez, J.J. Herna ´ndez, T.A. Ezquerra, Influence of single-walled carbon nanotubes on the effective elastic constants of poly(ethylene terephthalate), Compos. Sci. Technol. 70 (2010) 284-290.
- N. Ueda, T. Yamakami, T. Yamaguchi, K. Kitajima, Y. Usui, K. Aoki, T. Nakanishi, F. Miyaji, Morinobu Endo, Naoto Saito, S. Taruta, Fabrication and mechanical properties of high-dispersion-treated carbon nanofiber/ alumina composites, J. Ceram. Soc. Jpn. 118 (2010) 847-854.
- A.C. Zaman, C.B. Ustundag, N. Kus ¸konmaz, F. Kaya, C. Kaya, 3-D micro-ceramic components from hydrothermally processed carbon nano- tube-boehmite powders by electrophoretic deposition, Ceram. Int. 36 (2010) 1703-1710.
- F. Inam, H. Yan, T. Peijs, M.J. Reece, The sintering and grain growth behaviour of ceramic-carbon nanotube nanocomposites, Compos. Sci. Technol. 70 (2010) 947-952.
- I. Ahmad, M. Unwin, H. Cao, H. Chen, H. Zhao, A. Kennedy, Y.Q. Zhu, Multi-walled carbon nanotubes reinforced Al 2 O 3 nanocomposites: me- chanical properties and interfacial investigations, Compos. Sci. Technol. 70 (2010) 1199-1206.
- G. Yamamoto, M. Omori, T. Hashida, H. Kimura, A novel structure for carbon nanotube reinforced alumina composites with improved mechani- cal properties, Nanotechnology 19 (2008) 315708-315715.
- G.D. Zhan, A.K. Mukherjee, Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties, Int. J. Appl. Ceram. Technol. 1 (2004) 161-171.
- A.C. Zamana, C.B. U ¨stu ¨ndag, A. Celik, A. Kara, F. Kaya, Cengiz Kaya, Carbon nanotube/boehmite-derived alumina ceramics obtained by hydro- thermal synthesis and spark plasma sintering (SPS), J. Eur. Ceram. Soc. 30 (2010) 3351-3356.