Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein (original) (raw)
Abstract
Ten recombinant adenoviruses expressing either fragments of 1135, 1587, or 3329 nt or the full-length spike gene of transmissible gastroenteritis coronavirus (TGEV) have been constructed. These recombinants produce S polypeptides with apparent molecular masses of 68, 86, 135, and 200 kDa, respectively. Expression of the recombinant antigen driven by Ad5 promoters was inhibited by the insertion of an exogenous SV-40 promoter. Most of the recombinant antigens remain intracytoplasmic in infected cells. All the recombinant-directed expression products contain functional antigenic sites C and B (Gebauer et al., 1991, Virology 183, 225-238). The recombinant antigen of 135 kDa and that of 200 kDa, which represents the whole spike protein, also contain antigenic sites D and A, which have previously been shown to be the major inducers of TGEV-neutralizing antibodies. Interestingly, here we show that recombinant S protein fragments expressing only sites C and B also induced TGEV-neutralizing antibodies. The chimeric Ad5-TGEV recombinants elicited lactogenic immunity in hamsters, including the production of TGEV-neutralizing antibodies. The antisera induced in swine by the Ad5 recombinants expressing the amino-terminal 26% of the spike protein (containing sites C and B) or the full-length spike protein, when mixed with a lethal dose of virus prior to administration to susceptible piglets, delayed or completely prevented the induction of symptoms of disease, respectively. ᭧
Key takeaways
AI
- Ten recombinant adenoviruses expressing TGEV spike protein segments induce neutralizing antibodies.
- Both full-length and truncated spike proteins successfully elicit TGEV-neutralizing antibodies in swine.
- Recombinant proteins with 135 kDa and 200 kDa contain critical neutralizing sites A, B, C, and D.
- Ad5-TGEV recombinants provide lactogenic immunity and protect swine from TGEV infection.
- The study aims to evaluate the immunogenic potential of various spike protein fragments against TGEV.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (43)
- Antigenic differentiation between transmissible gastroenteri- TGEV expressed by recombinant baculovirus. Virology 185, 732- 740. tis virus of swine and a related porcine respiratory coronavirus. J. Gen. Virol. 69, 1725-1730.
- Godet, M., L'Haridon, R., Vautherot, J. F., and Laude, H. (1992). TGEV coronavirus ORF4 encodes a membrane protein that is incorporated
- Callebaut, P., Pensaert, M., and Enjuanes, L. (1994). Construction of a into virions. Virology 188, 666-675.
- recombinant adenovirus for the expression of the glycoprotein S Godet, M., Grosclaude, J., Delmas, B., and Laude, H. (1994). Major antigen of porcine respiratory coronavirus. Adv. Exp. Med. Biol. 342, receptor-binding and neutralization determinants are located within 469-470. the same domain of the transmissible gastroenteritis virus (Coronavi- Cavanagh, D., Davis, P. J., Derbyshire, J. H., and Peters, R. W. (1986). rus) spike protein. J. Virol. 68, 8008-8016.
- Coronavirus IBV: Virus retaining spike glycopolypeptide S2 but not S1 Graham, F. L., and Prevec, L. (1992). Adenovirus-based expression is unable to induce virus-neutralizing or haemagglutination-inhibiting vectors and recombinant vaccines. In ''Vaccines: New Approaches to antibody, or induce chicken tracheal protection. J. Gen. Virol. 67, Immunological Problems'' (R. W. Ellis, Ed.), pp. 363-385. Butterworth- 1435-1442. Heinemann, Stoneham, MA.
- Correa, I., Jime ´nez, G., Sun ˜e ´, C., Bullido, M. J., and Enjuanes, L. (1988).
- Graham, F. L., and van der Eb, A. J. (1973). A new technique for the Antigenic structure of the E2 glycoprotein from transmissible gastro- assay of infectivity of human adenovirus 5 DNA. Virology 52, 456- enteritis coronavirus. Virus Res. 10, 77-94.
- Daniel, C., and Talbot, P. J. (1990). Protection from lethal coronavirus Graham, F. L., Prevec, L., Schneider, M., Ghosh-Choudhury, G., McDer- infection by affinity-purified spike glycoprotein of murine hepatitis mott, M., and Johnson, D. C. (1988). Cloning and expression of glyco- virus, strain A59. Virology 174, 87-94. protein genes in human adenovirus vectors. In ''Technological Ad- Daniel, C., Anderson, R., Buchmeier, M. J., Fleming, J. O., Spaan, vances in Vaccine Development'' (L. Laskey, Ed.), pp. 243-253. A. R. W. J. M., Wege, H., and Talbot, P. J. (1993). Identification of an immu- Liss, New York. nodominant linear neutralization domain on the S2 portion of the Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977). Character- murine coronavirus spike glycoprotein and evidence that it forms istics of a human cell line transformed by DNA from human adenovi- part of a complex tridimensional structure. J. Virol. 67, 1185-1194. rus type 5. J. Gen. Virol. 36, 59-72.
- De Diego, M., Laviada, M. D., Enjuanes, L., and Escribano, J. M. (1992).
- Greenwood, F. C., Hunter, W. M., and Glover, J. W. (1963). The prepara- Epitope specificity of protective lactogenic immunity against swine tion of 131 I-labelled human growth hormone of high specific radioac- transmissible gastroenteritis virus. J. Virol. 66, 6502-6508. tivity. Biochem. J. 89, 114-123.
- Delmas, B., and Laude, H. (1990). Assembly of coronavirus spike protein Hanke, T., Graham, F. L., Lulitanond, V., and Johnson, D. C. (1990). into trimers and its role in epitope expression. J. Virol. 64, 5367- Herpes simplex virus IgG Fc receptor induced using recombinant 5375. adenovirus vectors expressing glycoproteins E and I. Virology 177, Delmas, B., Gelfi, J., and Laude, H. (1986). Antigenic structure of trans- 437-444.
- missible gastroenteritis virus. II. Domains in the peplomer glycopro- Hitt, M., Bett, A. J., Addison, C., Prevec, L., and Graham, F. L. (1995). tein. J. Gen. Virol. 67, 1405-1418. Techniques for human adenovirus vector construction and character- Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L. K., Nore ´n, O., and Laude, ization. In ''Methods in Molecular Genetics'' (K. W. Adolph, Ed.), Vol.
- H. (1992). Aminopeptidase N is a major receptor for the enteropatho- 7. Academic Press, Orlando. genic coronavirus TGEV. Nature 357, 417-420.
- Hitt, M., Bett, A. J., Prevec, L., and Graham, F. L. (1994). Construction
- Delmas, B., Rasschaert, D., Godet, M., Gelfi, J., and Laude, H. (1990). and propagation of human adenovirus vectors. In ''Cell Biology: A Four major antigenic sites of the coronavirus transmissible gastroen- Laboratory Handbook'' (J. E. Celis, Ed.), pp. 109-128. Academic teritis virus are located on the amino-terminal half of spike protein. Press, Orlando.
- J. Gen. Virol. 71, 1313-1323.
- Hu, S., Bruszewski, J., Boone, T., and Souza, L. (1984). Cloning and Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988). High efficiency expression of the surface glycoprotein gp195 of porcine transmissi- transformation of E. coli by high voltage electroporation. Nucleic ble gastroenteritis virus. In ''Modern Approaches to Vaccines. Molec- Acids Res. 16, 6127-6145. ular and Chemical Basis of Virus Virulence and Immunogenicity'' Enjuanes, L., and Van der Zeijst, B. A. M. (1995). Molecular basis of (R. M. Chanock and R. A. Lerner, Eds.), pp. 219-223. Cold Spring transmissible gastroenteritis coronavirus (TGEV) epidemiology. In Harbor Laboratory, New York.
- ''Coronaviruses'' (S. G. Siddell, Ed.), pp. 337-376. Plenum, New York. Hu, S., Bruszewski, J., Smallig, R., and Browne, J. K. (1987). Studies of Fazakerley, J. K., Parker, S. E., Bloom, F., and Buchmeier, M. J. (1992). TGEV S protein gp195 expressed in E. coli and by a TGE-vaccinia The V5A13.1 envelope glycoprotein deletion mutant of mouse hepati- virus recombinant. In ''Immunobiology of Proteins and Peptides. III. tis virus type-4 is neuroattenuated by its reduced rate of spread in Viral and Bacterial Antigens'' (M. Zouhair Attasi and H. L. Bachrach, the central nervous system. Virology 187, 178-188. Eds.), pp. 63-82. Plenum, New York.
- Fleming, J. O., Shubin, R. A., Sussman, M. A., Casteel, N., and Stohlman, Jime ´nez, G., Correa, I., Melgosa, M. P., Bullido, M. J., and Enjuanes, L.
- S. A. (1989). Monoclonal antibodies to the matrix (E1) glycoprotein (1986). Critical epitopes in transmissible gastroenteritis virus neutral- of mouse hepatitis virus protect mice from encephalitis. Virology 168, ization. J. Virol. 60, 131-139. 162-167.
- Jones, N., and Shenk, T. (1979). Isolation of adenovirus type 5 host Garwes, D. J., Lucas, M. H., Higgins, D. A., Pike, B. V., and Cartwright, range deletion mutants defective for transformation of rat embryo S. F. (1978). Antigenicity of structural components from porcine trans- cells. Cell 17, 683-689.
- missible gastroenteritis virus. Vet. Microbiol. 3, 179-190.
- Koolen, M. J. M., Borst, M. A. J., Horzinek, M. C., and Spaan, W. J. M. Gebauer, F., Posthumus, W. A. P., Correa, I., Sun ˜e ´, C., Sa ´nchez, C. M., (1990). Immunogenic peptide comprising a mouse hepatitis virus Smerdou, C., Lenstra, J. A., Meloen, R., and Enjuanes, L. (1991).
- B-cell epitope and an influenza virus T-cell epitope protects Residues involved in the formation of the antigenic sites of the S against lethal infection. J. Virol. 64, 6270-6273. protein of transmissible gastroenteritis coronavirus. Virology 183, Laemmli, U. K. (1970). Cleavage of structural proteins during the assem- 225-238. bly of the head of bacteriophage T4. Nature 227, 680-685.
- Ghosh-Choudhury, G., Haj-Ahmad, P., Brinkley, J., Rudy, J., and Graham, Laude, H., Gelfi, J., Lavenant, L., and Charley, B. (1992). Single amino F. L. (1986). Human adenovirus cloning vectors based on infectious acid changes in the viral glycoprotein M affect induction of alpha bacterial plasmids. Gene 50, 161-171. interferon by the coronavirus transmissible gastroenteritis virus. J. Virol. 66, 743-749.
- Godet, M., Rasschaert, D., and Laude, H. (1991). Processing and antige- nicity of entire and anchor-free spike glycoprotein-S of coronavirus Lecomte, J., Cainelli-Cebera, V., Mercier, G., Mansour, S., Talbot, P., Lussier, G., and Oth, D. (1987). Protection from mouse hepatitis virus M. J., Gebauer, F., Smerdou, C., Callebaut, P., Escribano, J. M., and Enjuanes, L. (1990). Antigenic homology among coronaviruses re- type 3-induced acute disease by an anti-nucleoprotein monoclonal antibody. Arch. Virol. 97, 123-130. lated to transmissible gastroenteritis virus. Virology 174, 410-417.
- Schneider, M., Graham, F. L., and Preveck, L. (1989). Expression of the Lenstra, J. A., Erkens, J. H. F., Zwaagstra, K. A., Posthumus, W. P. A., Meloen, R. H., Gebauer, F., Enjuanes, L., and Stanley, K. K. (1991). glycoprotein of VSV by infectious adenovirus vectors. J. Gen. Virol. 70, 417-427.
- Selection of mimotopes from a random sequence expression library by monoclonal antibodies against transmissible gastroentritis coro- Smerdou, C., Anto ´n, I. M., Plana, J., Curtiss, R., and Enjuanes, L. (1995). Expression of a continuous epitope from transmissible gastroenteri- navirus. J. Immunol. Methods 152, 149-157.
- Maniatis, T., Fritsh, E. F., and Sambrook, J. (1989). ''Molecular Cloning: tis coronavirus S protein fused to E. coli heat-labile toxin B subunit in attenuated Salmonella for oral immunization. Submitted for publi- A Laboratory Manual.'' Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. cation.
- Spaan, W., Cavanagh, D., and Horzinek, M. C. (1990). Coronaviruses.
- McClurkin, A. W., and Norman, J. O. (1966). Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopatho- In ''Immunochemistry of Viruses. II. The Basis for Serodiagnosis and Vaccines'' (M. H. V. Regenmortel and A. R. Neurath, Eds.), pp. 359- genic virus common to five isolates from transmissible gastroenteri- tis. Can. J. Comp. Vet. Sci. 30, 190-198. 375. Elsevier, Amsterdam.
- Sun ˜e ´, C., Jime ´nez, G., Correa, I., Bullido, M. J., Gebauer, F., Smerdou, C., Mittal, S. K., McDermott, M. R., Johnson, D. C., Prevec, L., and Graham, F. L. (1993). Monitoring foreign gene expression by a human adenovi- and Enjuanes, L. (1990). Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology 177, 559-569.
- rus based vector using the firefly luciferase as a reporter gene. Virus Res. 28, 67-90.
- Talbot, P. J., Salmi, A. A., Knobler, R. L., and Buchmeier, M. J. (1984). Topographical mapping of epitopes on the glycoprotein of murine Nakanaga, K., Yamanouchi, K., and Fujiwara, K. (1986). Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection hepatitis virus-4 (strain JHM): Correlation with biological activities. Virology 132, 250-260.
- in mice. J. Virol. 59, 168-171.
- Posthumus, W. P. A., Meloen, R. H., Enjuanes, L., Correa, I., van Torres, J. M., Alonso, C., Ortega, A., Graham, F. L., and Enjuanes, L. (1995). Tropism of human adenovirus Ad5 based vectors in swine
- Nieuwestadt, A., and Koch, G. (1990). Linear neutralizing epitopes on the peplomer protein of coronaviruses. Adv. Exp. Med. Biol. 276, and their use in protection against transmissible gastroenteritis virus. Submitted for publication. 181-188.
- Prevec, L., Campbell, J. B., Christie, B. S., Belbeck, L., and Graham, Tulboly, T., Nagy, E., Dennis, J. R., and Derbyshire, J. B. (1994). Immuno- genicity of the S protein of transmissible gastroenteritis virus ex- F. L. (1990). A recombinant human adenovirus vaccine against rabies. J. Infect. Dis. 161, 227-230. pressed in baculovirus. Arch. Virol. 137, 55-67.
- Welch, S. K. W., and Saif, L. J. (1988). Monoclonal antibodies to a virulent Pulford, D. J., and Britton, P. (1991). Intracellular processing of the porcine coronavirus transmissible gastroenteritis virus spike protein strain of transmissible gastroenteritis virus: Comparison of reactivity with virulent and attenuated virus. Arch. Virol. 101, 221-235. expressed by recombinant vaccinia virus. Virology 182, 765-773.
- Saif, L. J., and Wesley, R. D. (1992). Transmissible gastroenteritis. In Wesseling, J. G., Godeke, G. J., Schijns, V. E. C. J., Prevec, L., Frank, F. L., Horzinek, M. C., and Rotier, P. J. M. (1993). Mouse hepatitis ''Diseases of Swine'' (A. D. Leman, B. Straw, W. L. Mengeling, S. D'Allaire, and D. J. Taylor, Eds.), pp. 362-386. Iowa State Univ. Press, virus spike and nucleocapsid proteins expressed by adenovirus vec- tor protect mice against a lethal infection. J. Gen. Virol. 74, 2061- Ames. Sa ´nchez, C. M., Gebauer, F., Sun ˜e, C., Me ´ndez, A., Dopazo, J., and 2069.
- Yokomori, K., Asanaka, M., Stohlman, S. A., and Lai, M. M. C. (1993).
- Enjuanes, L. (1992). Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190, 92-105. A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry. Virology 196, 45-56.
- Sa ´nchez, C. M., Jime ´nez, G., Laviada, M. D., Correa, I., Sun ˜e ´, C., Bullido,