Open innovation at the Abbe School of Photonics (original) (raw)
Related papers
CATTS is a National Science Foundation-funded partnership between the University of Arizona and local school districts to improve science, mathematics and technology teaching at all levels. The goals of the CATTS Program are to develop sustainable partnerships with Kindergarten through 12th grade level (K-12) educators that foster integration of science, mathematics, engineering and technology research in classroom learning experiences. The program also creates opportunities for graduate and undergraduate students to be active participants in K-12 education by providing training and fellowships. CATTS seeks to foster effective teaching and a greater understanding of learning at all levels.
Seventh International Conference on Education and Training in Optics and Photonics, 2002
CATTS is a National Science Foundation-funded partnership between the University of Arizona and local school districts to improve science, mathematics and technology teaching at all levels. The goals of the CATTS Program are to develop sustainable partnerships with Kindergarten through 12th grade level (K-12) educators that foster integration of science, mathematics, engineering and technology research in classroom learning experiences. The program also creates opportunities for graduate and undergraduate students to be active participants in K-12 education by providing training and fellowships. CATTS seeks to foster effective teaching and a greater understanding of learning at all levels.
SPIE Proceedings, 2002
CATTS is a National Science Foundation-funded partnership between the University of Arizona and local school districts to improve science, mathematics and technology teaching at all levels. The goals of the CATTS Program are to develop sustainable partnerships with Kindergarten through 12th grade level (K-12) educators that foster integration of science, mathematics, engineering and technology research in classroom learning experiences. The program also creates opportunities for graduate and undergraduate students to be active participants in K-12 education by providing training and fellowships. CATTS seeks to foster effective teaching and a greater understanding of learning at all levels. School districts and University of Arizona outreach programs propose fellowship activities that address identified educational needs; they work together with CATTS to create customized programs to meet those needs. CATTS Fellows, their faculty mentors and K-12 partners participate in workshops to gain experience with inquiry-based teaching and understanding diverse learning styles. In the partnership, CATTS Fellows have an opportunity to share their research experiences with K-12 educators and gain experience with inquiry teaching. On the other side of the partnership, professional educators share their knowledge of teaching with Fellows and gain deeper understanding of scientific inquiry. In the two years that this NSF funded program has been in operation, a variety of lessons have been learned that can apply to school, university, and industrial partnerships to foster education and training. In particular since each organization operates in its own subculture, particular attention must be paid to raising cultural awareness among the participants in ways that foster mutual respect and communication of shared goals. Proper coordination and sensible logistics are also critical for the success of a complex project such as this. Training of the partners and the project management will also be described.
Photonics explorer: Revolutionizing photonics in the classroom
Proceedings of SPIE - The International Society for Optical Engineering, 2012
The 'Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light-hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.
Developing intra-curricular photonics educational material for secondary schools in Europe
12th Education and Training in Optics and Photonics Conference, 2014
There is an imminent shortage of skilled workforce facing Europe's hi-tech industries mainly due to the declining interest of young people in science and engineering careers. To avert this trend the European Union funded the development of the 'Photonics Explorer'-an intra-curricular educational kit designed to engage, excite and educate students about the fascination of working with optics hands-on, in their own classrooms! Each kit equips teachers with class sets of experimental components provided within a supporting didactic framework based on guided inquiry based learning techniques. The material has been specifically designed to integrate into the curriculum and enhance and complement the teaching and learning of science in the classroom. The kits are provided free of charge to teachers, in conjunction with teacher training courses. The main challenge of this program was the development of educational material that seamlessly integrates into the various national curricula across Europe. To achieve this, the development process included a preparatory EU wide curricula survey and a special 'Review and Revise' process bringing together the expertise of over 35 teachers and pedagogic experts. This paper reports on the results of the preparatory study which identified two specific age groups at secondary schools for photonics educational material, the didactic content of the Photonics Explorer kit resulting from a pan-European collaboration of key stakeholders, EU wide dissemination and sustainability of the program.
Evolution of a photonics education program
Tenth International Topical Meeting on Education and Training in Optics and Photonics, 2015
The Photonics Technology program at Niagara College was first launched in 2001. Since that time, in an attempt to meet the joint needs of industry and students, Niagara has developed the technology program into a cluster of four programs related to photonic technology. Niagara is also building relationships with universities to deliver photonic course material to physics undergrad students using Niagara College Photonics facilities and faculty to create an undergraduate specialization in lasers. This paper will review the development of the photonics cluster at Niagara College and present the current state of its evolution.
International Photonics Training: a Case Study
2010
From 2004, the Center for Science Education and Training (CSET) participated to the European Unionfunded educational network "Hands-on Science". The aim of the Romanian team was to transform teachers and students from end-users of educational aids to active designers and developers of instructional materials. Several science fields were identified, including photonics. The team at CSET is now focusing on: lasers and their applications, optical fiber communications, solar energy as a sustainable source, and the use of optical spectroscopy in physics and chemistry. CSET initiated an international collaboration with the New England Board of Higher Education (NEBHE) in Boston, Mass.
12th Education and Training in Optics and Photonics Conference, 2013
The National University of Colombia is committed to the spreading of the UNESCO's ALOP program throughout the country by programming a series of workshops (ALOP-NPH) to be held in each of its eight campuses. This huge effort is intended to contribute at a national scale to the training of high school teachers in new pedagogic methodologies. Furthermore, the ALOP Workshop has had large impact in the recently established Master's program on pedagogy of Sciences, a degree program addressed to middle and high school teachers, which has a current enrollment of more than 400 teachers from all over the country. In this paper we also describe the contributions of the team also ALOP-Colombia to the material and electronic devices used in optical transmission modules and data division multiplexing wavelength.
Innovating Pedagogy 2015: Open University Innovation Report 4
2015
This series of reports explores new forms of teaching, learning and assessment for an interactive world, to guide teachers and policy makers in productive innovation. This fourth report proposes ten innovations that are already in currency but have not yet had a profound influence on education. To produce it, a group of academics at the Institute of Educational Technology in The Open University collaborated with researchers from the Center for Technology in Learning at SRI International. We proposed a long list of new educational terms, theories, and practices. We then pared these down to ten that have the potential to provoke major shifts in educational practice, particularly in post-school education. Lastly, we drew on published and unpublished writings to compile the ten sketches of new pedagogies that might transform education. These are summarised below in an approximate order of immediacy and timescale to widespread implementation.