2000): “Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models (original) (raw)

2015

Abstract

Abstract: The possibility of exact maximum likelihood estimation of many observation-driven models remains an open question. Often only approximate maximum likelihood estimation is attempted, because the unconditional density needed for exact estimation is not known in closed form. Using simulation and nonparametric density estimation techniques that facilitate empirical likelihood evaluation, we develop an exact maximum likelihood procedure. We provide an illustrative application to the estimation of ARCH models, in which we compare the sampling properties of the exact estimator to those of several competitors. We fmd that, especially in situations of small samples and high persistence, efficiency gains are obtained. Acknowledgments: This is a revised and extended version of our earlier paper,

Til Schuermann hasn't uploaded this paper.

Let Til know you want this paper to be uploaded.

Ask for this paper to be uploaded.