Heterologous expression of Dehalobacter spp. respiratory reductive dehalogenases in Escherichia coli (original) (raw)
Related papers
Guided cobamide biosynthesis for heterologous production of reductive dehalogenases
Microbial Biotechnology
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceA Y51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethanedihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.
Applied and environmental microbiology, 2014
The anaerobic dehalogenation of organohalides is catalyzed by the reductive dehalogenase (RdhA) enzymes produced in phylogenetically diverse bacteria. These enzymes contain a cobamide cofactor at the active site and two iron-sulfur clusters. In this study, the tetrachloroethene (PCE) reductive dehalogenase (PceA) of the Gram-positive Desulfitobacterium hafniense strain Y51 was produced in a catalytically active form in the nondechlorinating, cobamide-producing bacterium Shimwellia blattae (ATCC 33430), a Gram-negative gammaproteobacterium. The formation of recombinant catalytically active PceA enzyme was significantly enhanced when its dedicated PceT chaperone was coproduced and when 5,6-dimethylbenzimidazole and hydroxocobalamin were added to the S. blattae cultures. The experiments were extended to D. hafniense DCB-2, a reductively dehalogenating bacterium harboring multiple rdhA genes. To elucidate the substrate spectrum of the rdhA3 gene product of this organism, the recombinant...
Organohalide respiratory chains: composition, topology and key enzymes
FEMS microbiology ecology, 2018
The utilization of halogenated organic compounds as terminal electron acceptors separates the phylogenetically diverse organohalide-respiring bacteria from other respiratory anaerobes that predominantly use nitrate, fumarate, sulfate or oxidized metals. Organohalide respiration is unique in recruiting a cobamide-containing iron-sulfur protein, the extracellular membrane-bound reductive dehalogenase, as terminal reductase in the electron transfer chain. In recent years substantial contributions have been made to the understanding of how electron transfer paths couple mechanistically to chemiosmosis in the organohalide-respiring bacteria. The structural analysis of a respiratory and a non-respiratory reductive dehalogenase revealed the intramolecular electron transfer via two cubane iron-sulfur clusters to the cobamide at the active site. Based on whether quinones are involved, two types of intermolecular electron transfer chains have been identified, which differ in their composition...
Journal of Bacteriology, 2014
Desulfitobacterium dehalogenansis able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome ofDesulfitobacterium dehalogenansJW/IU-DC1Tconsists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterizedcprTKZEBACDgene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these compon...
Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer
Nature communications, 2017
The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which...
The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
Journal of Proteome Research
Bacteria of the genus Dehalogenimonas respire with vicinally halogenated alkanes via dihaloelimination. We aimed to describe involved proteins and their supermolecular organization. Metagenomic sequencing of a Dehalogenimonas-containing culture resulted in a 1.65 Mbp draft genome of Dehalogenimonas alkenigignens strain BRE15M. It contained 31 full-length reductive dehalogenase homologous genes (rdhA), but only eight had cognate rdhB gene coding for membrane-anchoring proteins. Shotgun proteomics of cells grown with 1,2-dichloropropane as an electron acceptor identified 1152 proteins representing more than 60% of the total proteome. Ten RdhA proteins were detected, including a DcpA ortholog, which was the strongest expressed RdhA. Blue native gel electrophoresis (BNE) demonstrating maximum activity was localized in a protein complex of 146−242 kDa. Protein mass spectrometry revealed the presence of DcpA, its membrane-anchoring protein DcpB, two hydrogen uptake hydrogenase subunits (HupL and HupS), an iron−sulfur protein (HupX), and subunits of a redox protein with a molybdopterin-binding motif (OmeA and OmeB) in the complex. BNE after protein solubilization with different detergent concentrations revealed no evidence for an interaction between the putative respiratory electron input module (HupLS) and the OmeA/OmeB/HupX module. All detected RdhAs comigrated with the organohalide respiration complex. Based on genomic and proteomic analysis, we propose quinoneindependent respiration in Dehalogenimonas.
The FEBS Journal
Reductive dehalogenases (RDases) of organohalide-respiring bacteria are cobamide-containing iron-sulfur proteins that catalyze different reductive dehalogenation reactions. Here, we report a functional analysis of two recombinant RDases, the tetrachloroethene (PCE) reductive dehalogenase (PceA) of Desulfitobacterium hafniense Y51 and the 1,2-dichloroethane (1,2-DCA) reductive dehalogenase (DcaA) of Desulfitobacterium dichloroeliminans DCA1. Both enzymes share 88% protein sequence identity, but appeared to have divergent mechanisms. In this study, the heterologously produced DcaA converted 1,2-DCA and 1,1,2-trichloroethane (1,1,2-TCA) via dihaloelimination to ethene and vinyl chloride, respectively. In addition, halogen substitution at PCE, trichloroethene (TCE) and tribromoethene (TBE) was observed, but only at low rates. In contrast, recombinant PceA exclusively converted halogenated ethenes and showed no dihaloelimination activity. In silico structural analysis of both RDases revealed similar architectures of their active site cavities. Exchange of the highly conserved Tyr298 to Phe led to a complete loss of the PCE, TCE and TBE conversion by both RDases, strengthening the assumption that Tyr298 functions as proton donor in the course of halogen substitution. The exchange did not affect the ability of DcaA to convert 1,2-DCA and 1,1,2-TCA. This result makes the involvement of a proton transfer in the dihaloelimination reaction unlikely and allows for a clear differentiation between two mechanisms working in DcaA and PceA. The analysis of the role of the active site structure for RDase function was extended to the mutations W118F that had a negative effect on DcaA function and W432F or T294V that caused alterations in the substrate specificity of the enzyme. Enzymes Tetrachloroethene reductive dehalogenase (EC 1.21.99.5), DCA-RDase.
Applied and Environmental Microbiology, 2012
Dehalococcoides mccartyi strains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel slices and subsequent identification of proteins in gel slices using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RDase expression was investigated in cultures of Dehalococcoides mccartyi strain BAV1 and in the KB-1 consortium growing on chlorinated ethenes and 1,2-dichloroethane. In cultures of strain BAV1, BvcA was the only RDase detected, revealing that this enzyme catalyzes the dechlorination not only of vinyl chloride, but also of all dichloroethene isomers and 1,2-dichloroethane. In cultures of consortium KB-1, five distinct Dehalococcoides RDases and one Geobact...