The interaction of excited atoms and few-cycle laser pulses (original) (raw)
Abstract
This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (44)
- Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246 (2006).
- Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611 (2003).
- Spielmann, C. et al. Near-keV coherent x-ray generation with sub-10-fs lasers. IEEE Journal of Selected Topics in Quantum Electronics 4, 249-265 (1998).
- Rudenko, A. et al. Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms. Phys. Rev. Lett. 93, 253001 (2004).
- Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182 (2001).
- Nisoli, M. et al. Effects of carrier-envelope phase differences of few-optical-cycle light pulses in single-shot high-order-harmonic spectra. Phys. Rev. Lett. 91, 213905 (2003).
- Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004).
- Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545-591 (2000).
- Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965).
- Corkum, P. B. Plasma perspective on strong field multi photon ionisation. Phys. Rev. Lett. 71, 1994 (1993).
- de Jesus, V. L. B. et al. Atomic structure dependence of non sequential double ionisation of He, Ne and Ar in strong laser pulses. J. Phys. B: At. Mol. Opt. Phys. 37, L161 (2004).
- Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259 (1989).
- Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunneling ionisation of complex atoms and atomic ions by an alternating electromagnetic field. Sov. Phys. JETP 64, 425 (1986).
- Perelomov, A. M., Popov, V. S. & Terent' ev, M. V. Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 942 (1965).
- Krainov, V. P. Ionization rates and energy and angular distribution at the barrier-suppression ionization of complex atoms and atomic units. J. Opt. Soc. Amer. B 14, 425-431 (1997).
- Tong, X. M. & Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier- suppression regime. J. Phys. B: At. Mol. Opt. Phys. 38, 2593 (2005).
- Tong, X. M., Hino, K. & Toshima, N. Phase-dependent atomic ionization in few-cycle intense laser fields. Phys. Rev. A 74, 031405(R) (2006).
- Grum-Grzhimailo, A. N., Abeln, B., Bartschat, K., Weflen, D. & Urness, T. Ionization of atomic hydrogen in strong infrared laser fields. Phys. Rev. A 81, 043408 (2010).
- Schuricke, M. et al. Strong-field ionization of lithium. Phys. Rev. A 83, 023413 (2011).
- Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61 (2011).
- Ivanov, I. A. et al. Transverse electron momentum distribution in tunneling and over the barrier ionization by laser pulses with varying ellipticity. Scientific Reports 6, 19002 (2016).
- Khakoo, M. A., Tran, T., Bordelon, D. & Csanak, G. Excitation of the |(n + 1) 3 P 2 〉 and |(n + 1) 3 P 0 〉 metastable levels of the heavy rare gases from the |n 1 S 0 〉 ground state by electron impact. Phys. Rev. A 45, 219 (1992).
- Shimizu, F., Shimizu, K. & Takuma, H. A high intensity metastable neon trap. Chemical Physics 145, 327 (1990).
- Kuppens, S. J. M. et al. Approaching Bose-Einstein condensation of metastable neon: Over 10 9 trapped atoms. Phys. Rev. A 65, 023410 (2002).
- Matherson, K. J., Glover, R. D., Laban, D. E. & Sang, R. T. Absolute metastable atom-atom collision cross section measurements using a magneto-optical trap. Rev. Sci. Instrum. 78, 073102 (2007).
- Matherson, K. J., Glover, R. D., Laban, D. E. & Sang, R. T. Measurement of low-energy total absolute atomic collision cross section with the metastable 3 P 2 state of neon using a magneto-optical trap. Phys. Rev. A 78, 042712 (2008).
- Pullen, M. G. et al. Measurement of laser intensities approaching 10 15 W/cm 2 with an accuracy of 1%. Phys. Rev. A 87, 053411 (2013).
- Kielpinski, D., Sang, R. T. & Litvinyuk, I. V. Benchmarking strong-field ionization with atomic hydrogen. J. Phys. B: At. Mol. Opt. Phys. 47, 204003 (2014).
- Varcoe, B. T. H., Sang, R. T., MacGillivary, W. R., Standage, M. C. & Farrell, P. M. Optical pumping of the na d2 transition with the elliptically polarised light. J. Mod. Opt. 46, 787 (1999).
- Metcalf, H. & Straten, P. Laser Cooling and Trapping. (Springer Verlag, New York, 1999).
- Beardmore, J. P., Palmer, A. J., Kuiper, K. C. & Sang, R. T. A hexapole magnetic guide for neutral atomic beams. Rev. Sci. Instrum. 80, 073105 (2009).
- Born, M. & Wolf, E. Principals of Optics. (Cambridge University Press, Cambridge, 1999).
- Guo, C., Li, M., Nibarger, J. P. & Gibson, G. N. Single and double ionization of diatomic molecules in strong laser fields. Phys. Rev. A 58, R4271 (1998).
- Walker, B. et al. Precision Measurement of Strong Field Double Ionization of Helium. Phys. Rev. Lett. 73, 1227 (1994).
- Alnaser, A. S. et al. Laser-peak-intensity calibration using recoil-ion momentum imaging. Phys. Rev. A 70, 023413 (2004).
- Xu, H. et al. Carrier-envelope-phase-dependent dissociation of hydrogen. New J. Phys. 15, 023034 (2013).
- Palmer, A. J., Baker, M. & Sang, R. T. Quantitative comparison of rare-gas cold cathode discharge metastable atomic beam sources. Rev. Sci. Instrum. 75, 5056 (2004).
- Baker, M., Palmer, A. J. & Sang, R. T. A high flux metastable atomic discharge source with three-dimensional translation. Meas. Sci. Tech. 14, N5 (2003).
- Gay, T. Source of metastable atoms and molecules. In Experimental Methods in the Physical Science vol. 29B, chap. 6 (Academic Press, New York, 1994).
- Hoogerland, M. D. et al. Bright thermal atomic beams by laser cooling: A 1400-fold gain in beam flux. Appl. Phys. B: Lasers Opt. 62, 323 (1996).
- X. M. & Chu, S. I. Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonances. Phys. Rev. A 55, 3406-3416 (1997).
- Tong, X. M., Zhao, Z. X. & Lin, C. D. Theory of molecular tunneling ionization. Phys. Rev. A 66, 033402 (2002).
- Tong, X. M. & Chu, S. I. Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chem. Phys. 217, 119-130 (1997).
- Tong, X. M. & Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier- suppression regime. J. Phys. B 38, 2593-2600 (2005).