Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond (original) (raw)

Preface "An historical perspective on the development of the Thermodynamic Equation of Seawater – 2010&quot

Ocean Science, 2012

Oceanography is concerned with understanding the mechanisms controlling the movement of seawater and its contents. A fundamental tool in this process is the characterization of the thermophysical properties of seawater as functions of measured temperature and electrical conductivity, the latter used as a proxy for the concentration of dissolved matter in seawater. For many years a collection of algorithms denoted the Equation of State 1980 (EOS-80) has been the internationally accepted standard for calculating such properties. However, modern measurement technology now allows routine observations of temperature and electrical conductivity to be made to at least one order of magnitude more accurately than the uncertainty in this standard. Recently, a new standard has been developed, the Thermodynamical Equation of Seawater 2010 (TEOS-10). This new standard is thermodynamically consistent, valid over a wider range of temperature and salinity, and includes a mechanism to account for composition variations in seawater. Here we review the scientific development of this standard, and describe the literature involved in its development, which includes many of the articles in this special issue.

An historical perspective on the development of the Thermodynamic Equation of Seawater – 2010

Ocean Science, 2012

Oceanography is concerned with understanding the mechanisms controlling the movement of seawater and its contents. A fundamental tool in this process is the characterization of the thermophysical properties of seawater as functions of measured temperature and electrical conductivity, the latter used as a proxy for the concentration of dissolved matter in seawater. For many years a collection of algorithms denoted the Equation of State 1980 (EOS-80) has been the internationally accepted standard for calculating such properties. However, modern measurement technology now allows routine observations of temperature and electrical conductivity to be made to at least one order of magnitude more accurately than the uncertainty in this standard.

Entropy: From Thermodynamics to Hydrology

Entropy, 2014

Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a) to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b) to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron) from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

The First Law of Thermodynamics in a salty ocean

Progress in Oceanography, 2006

The First Law of Thermodynamics is developed from fundamentals for open, non-equilibrium systems of seawater in motion, exchanging salt and freshwater internally and with their surroundings, and varying continuously in temperature, pressure, and salinity. The aim is clarity and consistency of concepts -and precision in the accompanying vocabulary. Particular attention is given to the way in which salinity variation plays out in the logical structures. The arbitrary constants in the thermodynamic potentials and the various First Law equations are highlighted, in order to remove them, and to recover the physically meaningful content. When this is done, it is seen that salinity variations have little consequence in application of the First Law to the ocean, apart from affecting values of coefficients.

Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography

Ocean Science, 2008

A new seawater standard for oceanographic and engineering applications has been developed that consists of three independent thermodynamic potential functions, derived from extensive distinct sets of very accurate experimental data. The results have been formulated as Releases of the International Association for the Properties of Water and Steam, IAPWS (1996IAPWS ( , 2006IAPWS ( , 2008 and are expected to be adopted internationally by other organizations in subsequent years. In order to successfully perform computations such as phase equilibria from combinations of these potential functions, mutual compatibility and consistency of these independent mathematical functions must be ensured. In this article, a brief review of their separate development and ranges of validity is given. We analyse background details on the conditions specified at their reference states, the triple point and the standard ocean state, to ensure the mutual consistency of the different formulations, and the necessity and possibility of numerically evaluating metastable states of liquid water. Computed from this formulation in quadruple precision (128-bit floating point numbers), tables of numerical reference values are provided as anchor points for the consistent incorporation of additional potential functions in the future, and as unambiguous benchmarks to be used in the determination of numerical uncertainty estimates of doubleprecision implementations on different platforms that may be customized for special purposes.

Development of thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography

Ocean Science Discussions, 2008

A new seawater standard has been developed for oceanographic and engineering applications that consists of three independent thermodynamic potential functions, derived from extended distinct sets of very accurate experimental data. The results have been formulated as Releases of the International Association for the Properties of Wa-5 ter and Steam, IAPWS (1996IAPWS ( , 2006IAPWS ( , 2008 and are to be adopted internationally by other organizations in subsequent years. In order to successfully perform computations such as phase equilibria from combinations of these potential functions, mutual compatibility and consistency of these independent mathematical functions must be ensured. In this article, a brief review of their separate development and ranges of 10 validity is given. We analyse background details on the conditions specified at their reference states, the triple point and the standard ocean state, to ensure the mutual consistency of the different formulations, and we consider the necessity and possibility of numerically evaluating metastable states of liquid water. Computed from this formulation in quadruple precision (128 bit floating point numbers), tables of numerical 15 reference values are provided as anchor points for the consistent incorporation of additional potential functions in the future, and as unambiguous benchmarks to be used in the determination of numerical uncertainty estimates of double-precision implementations on different platforms that may be customized for special purposes.

Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

Ocean Science, 2010

A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10) was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127) on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA) library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS). Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines

Ocean Science, 2010

The SCOR/IAPSO 1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS-10) was endorsed by IOC/UNESCO 2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air) library and the GSW (Gibbs SeaWater) library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org). This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed

Numerical implementation and oceanographic application of the thermodynamic potentials of water, vapour, ice, seawater and air – Part 1: Background and equations

2010

A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10) was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127) on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA) library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS). Details of the implementation in the TEOS-10 SIA library are given in a companion paper.