CFD Simulation and Mitigation with Boiling Liquid Expanding Vapor Explosion (BLEVE) Caused by Jet Fire (original) (raw)
Abstract
Different kinds of explosions are driven by the internal energy accumulated in compressed gas or superheated liquid. A well-known example of such an explosion is the burst of a vessel with pressure-liquefied substance, known as Boiling Liquid Expanding Vapor Explosion (BLEVE). Hot BLEVE accident is caused mainly by direct heating (pool fire or jet fire) of the steel casing at the vapor side of the tank to temperatures in excess of 400 °C. Thermal insulation around the tank can significantly reduce and retard the excessive heating of the tank casings in a fire. This will allow fire fighters enough time to reach the accident location and to cool the LPG (Liquid Petroleum Gas) tank to avoid the BLEVE, to extinguish the fire or to evacuate the people in the vicinity of the accident. The proposed algorithm addresses several aspects of the BLEVE accident and its mitigation: Computational Fluid Dynamic (CFD) Simulation of jet fire by using fire dynamics simulator (FDS) software by using la...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (38)
- Marshall, V. Major Chemical Hazards; Ellis-Horwood: Chichester, UK, 1987.
- Yakush, S.E. Model for blast waves of boiling liquid expanding vapor explosions. Int. J. Heat Mass Transf. 2016, 103, 173-185. [CrossRef]
- Gelfand, B.E. Features and simulations of non-ideal explosions. In Proceedings of the 3rd International Seminar on Fire and Explosion Hazards (ISFEH 2000), Preston, UK, 10-14 April 2000; pp. 43-56.
- Van den Schoor, F. Influence of Pressure and Temperature on Flammability Limits of Combustible Gases in Air, Division of Applied Mechanics and Energy Conversion Section; Katholieke Universiteit: Leuven, Belgium, 2007.
- Baker, Q.A.; Tang, M.J.; Pieroazio, A.P.; Birk, A.M.; Woodward, S.E.; Geng, J.; Ketchum, D.E.; Parsons, P.J.; Thomas, J.K.; Daudonnet, B. Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE, and Flash Fire Hazards, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.
- Marsden, E. Consequence Modelling: Overview of Hazards. Available online: https://risk-engineering.org (accessed on 1 October 2018).
- Berthélot, M.; Vieille, P. Sur la vitesse de propagation des phenomenes explosifs dans le gaz. C. R. Acad. Sci. Paris 1881, 93, 18.
- Mallard, E.; Le Chatelier, H.L. Sur la vitesse de propagation de l'inflammation dans les melanges explosifs. C. R. Acad. Sci. Paris 1881, 93, 145-148.
- Lewis, B.; Von Elbe, G. Combustion Flames and Explosion of Gases, 2nd ed.; Academic Press Inc.: New York, NY, USA; London, UK, 1961.
- Volpiani, P.S.; Schmitt, T.; Vermorel, O.; Quillatre, P.; Veynante, D. Large eddy simulation of explosion deflagrating flames using a dynamic wrinkling formulation. Combust. Flame 2017, 186, 17-31. [CrossRef]
- Diéguez, P.M.; López-San, M.J.; Idareta, I.; Uriz, I.; Arzamendi, G.G.; Luis, M. Hydrogen Hazards and Risks Analysis through CFD Simulations. In Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety; Gandia, L., Arzamedi, G., Diegues, P., Eds.; Elsevier: Oxford, UK, 2013; Chapter 18; pp. 437-452.
- Pinhasi, G.A.; Ullmann, A.; Dayan, A. 1D plane numerical model for boiling liquid expanding vapor explosion (BLEVE). Int. J. Heat Mass Transf. 2007, 50, 4780-4795. [CrossRef]
- Scholz, B.; Wuersig, G.M. Consequences of Pool Fires to LNG Ship Cargo Tanks. In Process and Plant Safety Applying Computational Fluid Dynamics; Schmidt, J., Ed.; Wiley-VCH Verlag & Co.: Weinheim, Germany, 2012; Volume 12, Chapter 8; pp. 123-137.
- Molag, M.; Reinders, J.; Elbers, J. Measures to Avoid a Hot BLEVE of a LPG Tank; IChemE: Rugby, UK, 2007.
- Sklorz, C.; Otremba, F.; Balke, C. BLEVE performance of fire protection coating systems on dangerous goods tanks in a test fire. Int. J. Mater. Sci. Eng. 2013, 1, 90-93. [CrossRef]
- Jimenez, M.; Duquesne, S.; Bourbigot, S. High-throughput fire testing for intumescent coatings. Ind. Eng. Chem. Res. 2006, 45, 7475-7481. [CrossRef]
- Jimenez, M.; Bellayer, S.; Naik, A.; Bachelet, P.; Duquesne, S.; Bourbigot, S. Topcoats versus durability of an intumescent coating. Ind. Eng. Chem. Res. 2016, 55, 9625-9632. [CrossRef]
- Geoffroy, L.; Samyn, F.; Jimenez, M.; Bourbigot, S. Intumescent polymer metal laminates for fire protection. Polymers 2018, 10, 995. [CrossRef]
- Pötzsch, S.; Krüger, S.; Sklorz, C.; Borch, J.; Hilse, T.; Otremba, F. The fire resistance of lightweight composite tanks depending on fire protection systems. Fire Saf. J. 2018, 100, 118-127. [CrossRef]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer: Dordrecht, The Netherlands, 2006.
- American Iron and Steel Institute. High Temperature Characteristics of Stainless Steels, A Designer's Handbook Series; AISI: Washington D.C., NY, USA, 1979.
- McGrattan, K. Fire Dynamics Simulator (Version 5)-Technical Reference Guide Volume 1: Mathematical Model; NIST Special Publication 1018; National Institute of Standards and Technology U.S. Department of Commerce: Washington D.C., NY, USA, 2010.
- McGrattan, K.; Forney, G.P. Fire Dynamics Simulator (Version 5)-User's Guide; NIST Special Publication 1019; National Institute of Standards and Technology U.S. Department of Commerce: Washington D.C., NY, USA, 2010.
- McGrattan, K. Numerical Simulation of the Caldecott Tunnel Fire, April 1982; NISTIR; National Institute of Standards and Technology; U.S. Department of Commerce: Washington D.C., NY, USA, 2005.
- Baukal, C.E. Heat Transfer in Industrial Combustion; CRC Press LLC: New York, NY, USA, 2000.
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill Book Company: New York, NY, USA, 1988.
- Statler, D.L., Jr. A Mechanistic and Modeling Study of Recycled and Virgin Flame Retarded Polycarbonate. Ph.D. Thesis, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WW, USA, 2008.
- Feih, S.; Mathys, Z.; Gibson, A.G.; Mouritz, A.P. Modelling the tension and compression strengths of polymer laminates in fire. Compos. Sci. Technol. 2007, 67, 551-564. [CrossRef]
- COMSOL Multiphysics-Modeling Guide, Version 4.3b; COMSOL AB: Stockholm, Sweden, 2013.
- Gu, P.; Chen, W. Influence of thermal distortion to compression failure of polymer matrix panels in fire. Compos. Struct. 2012, 94, 2174-2180. [CrossRef]
- Huang, Y.; Zhu, Y.; Cimini, C.A., Jr.; Ha, S.K. Characterization of moisture effect on static and fatigue performance of epoxy resin using thin-film specimen on dynamic mechanical analyzer. J. Compos. Mater. 2016, 51, 303-314. [CrossRef]
- Mouritz, A.P.; Mathys, Z. Post-fire mechanical properties of marine polymer composites. Compos. Struct. 1999, 47, 643-653. [CrossRef]
- Giesbrecht, H.; Hess, K.; Leuckel, W.; Maurer, B. Analyse der potentiellen explosionswirkung von kurzzeitig in de atmosphaere freigesetzen brenngasmengen. Chem. Ing. Tech. 1980, 52, 114-122. [CrossRef]
- Van Doormaal, J.C.A.M.; Van Wees, R.M.M. Rupture of Vessels. In Methods for the Calculation of Physical Effects, CPR 14E (Yellow Book), 3rd ed.; Van den Bosch, C.J.H., Weterings, R.A.P.M., Eds.; TNO: The Hague, The Netherlands, 2005; Chapter 7; pp. 697-775.
- Çengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach, 5th ed.; McGraw-Hill: New York, NY, USA, 2006.
- Wighus, R.; Drangsholt, G. Impinging jet Fire Experiments-Propane 14 MW Laboratory Tests, STF25 A92026; SINTEF NBL-Norwegian Fire Research Laboratory: Trondheim, Norway, 1993.
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R. Fire Dynamics Simulator (Version 5)-Technical Reference Guide Volume 3: Validation; NIST Special Publication 1018-5; National Institute of Standards and Technology, U.S. Department of Commerce: Washington D.C., NY, USA, 2010.
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011.