Bioactive dressings to promote wound healing (original) (raw)
Related papers
A REVIEW ON CHITOSAN-BASED MATERIALS AS POTENTIAL WOUND DRESSING MATERIALS Review Article
International Journal of Applied Pharmaceutics, 2022
This review article aimed to study chitosan as a material based in wound dressing preparation. The method in this review is the approximation method. The articles were obtained from national and international journals such as Scopus, PubMed, and Google Scholar by using the keywords "Chitosan", "Wound Healing", and "Biomedical Application". The inclusion criteria of the article are: national and international journals and books contains chitosan as, published in the last ten years, and not review article. The final articles used in this review are 29 articles that studying the use of chitosan as wound dressing material. The combination of chitosan with some polymer, ion and other materials resulting the chitosan-based materials namely nanofibrous membranes, composites sponge, polyelectrolyte complex, and composites, that used in topical preparation such as membranes, fibers, sponge, film, and gel. Thus, the modified of chitosan wound healing preparation resulting in the improve of healing activity of each preparation from. This review summarizes chitosan application in wound healing. Several studies were proposed the porous structure of chitosan-based materials lead the improvement of healing activity.
A Review on Chitosan-Based Materials as Potential Wound Dressing Materials
International Journal of Applied Pharmaceutics, 2022
This review article aimed to study chitosan as a material based in wound dressing preparation. The method in this review is the approximation method. The articles were obtained from national and international journals such as Scopus, PubMed, and Google Scholar by using the keywords "Chitosan", "Wound Healing", and "Biomedical Application". The inclusion criteria of the article are: national and international journals and books contains chitosan as, published in the last ten years, and not review article. The final articles used in this review are 29 articles that studying the use of chitosan as wound dressing material. The combination of chitosan with some polymer, ion and other materials resulting the chitosan-based materials namely nanofibrous membranes, composites sponge, polyelectrolyte complex, and composites, that used in topical preparation such as membranes, fibers, sponge, film, and gel. Thus, the modified of chitosan wound healing preparation resulting in the improve of healing activity of each preparation from. This review summarizes chitosan application in wound healing. Several studies were proposed the porous structure of chitosan-based materials lead the improvement of healing activity.
Chitosan Based Dressings for Wound Care
Biopolymer researchers have advanced new strategies to improve the properties of wound dressings over the last decade which is becoming one of the most swiftly growing fields in the biomedical and pharmacy. The advantages of these biopolymers (particularly chitosan) is that, they can be easily processed into different forms which needs to be for different biomedical applications. Chitosan is the well-known natural biopolymer which is safe to be use, biocompatible and biodegradable in nature. This review provides an outline of the chitosan properties and its biomedical properties toward applications in anti-inflammatory and wound caring management.
Novel Chitin and Chitosan Materials in Wound Dressing
Chitin is the second most abundant natural polysaccharide after cellulose on earth. It is a high molecular weight linear homopolymer of β-(1, 4) linked N-acetylglucosamine (N-acetyl-2-amino-2-deoxy-D-glucopyranose) units. Chitosan, a copolymer of glucosamine and N-acetyl glucosamine units linked by 1-4 glucosidic bonds, is a cationic polysaccharide obtained by alkaline deacetylation of chitin. The role of chitin and chitosan as biomaterials are amazing as evidenced by the published scientific papers and patents.
Development of a new chitosan hydrogel for wound dressing
Wound Repair and Regeneration, 2009
Wound healing is a complex process involving an integrated response by many different cell types and growth factors in order to achieve rapid restoration of skin architecture and function. The present study evaluated the applicability of a chitosan hydrogel (CH) as a wound dressing. Scanning electron microscopy analysis was used to characterize CH morphology. Fibroblast cells isolated from rat skin were used to assess the cytotoxicity of the hydrogel. CH was able to promote cell adhesion and proliferation. Cell viability studies showed that the hydrogel and its degradation by-products are noncytotoxic. The evaluation of the applicability of CH in the treatment of dermal burns in Wistar rats was performed by induction of full-thickness transcutaneous dermal wounds. Wound healing was monitored through macroscopic and histological analysis. From macroscopic analysis, the wound beds of the animals treated with CH were considerably smaller than those of the controls. Histological analysis revealed lack of a reactive or a granulomatous inflammatory reaction in skin lesions with CH and the absence of pathological abnormalities in the organs obtained by necropsy, which supported the local and systemic histocompatibility of the biomaterial. The present results suggest that this biomaterial may aid the re-establishment of skin architecture.
New antimicrobial chitosan derivatives for wound dressing applications
Carbohydrate Polymers, 2016
Chitosan is a non-toxic, biocompatible, biodegradable natural cationic polymer known for its low imunogenicity, antimicrobial, antioxidant effects and wound-healing activity. To improve its therapeutic potential, new chitosan-sulfonamide derivatives have been designed to develop new wound dressing biomaterials. The structural, morphological and physico-chemical properties of synthesized chitosan derivatives were analyzed by FT-IR, 1 H-NMR spectroscopy, scanning electron microscopy, swelling ability and porosity. Antimicrobial, in vivo testing and biodegradation behavior have been also performed. The chitosan derivative membranes showed improved swelling and biodegradation rate, which are important characteristics required for the wound healing process. The antimicrobial assay evidenced that chitosan-based sulfadiazine, sulfadimethoxine and sulfamethoxazole derivatives were the most active. The MTT assay showed that some of chitosan derivatives are nontoxic. Furthermore, the in vivo study on burn wound model induced in Wistar rats demonstrated an improved healing effect and enhanced epithelialization of chitosan-sulfonamide derivatives compared to neat chitosan. The obtained results strongly recommend the use of some of the newly developed chitosan derivatives as antimicrobial wound dressing biomaterials.
Chitosan as a starting material for wound healing applications
European Journal of Pharmaceutics and Biopharmaceutics, 2015
Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethylchitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,Ntrimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo and clinical applications in wound healing are described.
Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action
International Journal of Molecular Sciences
Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applic...
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Patrulea Review Chitosan as a Starting Material for wound healing
Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethylchitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,Ntrimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo and clinical applications in wound healing are described.