Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course (original) (raw)

Role for Nonstructural Protein 1 of Severe Acute Respiratory Syndrome Coronavirus in Chemokine Dysregulation

Journal of Virology, 2007

Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus. Since its associated morbidity and mortality have been postulated to be due to immune dysregulation, we investigated which of the viral proteins is responsible for chemokine overexpression. To delineate the viral and cellular factor interactions, the role of four SARS coronavirus proteins, including nonstructural protein 1 (nsp-1), nsp-5, envelope, and membrane, were examined in terms of cytokine induction. Our results showed that the SARS coronavirus nsp-1 plays an important role in CCL5, CXCL10, and CCL3 expression in human lung epithelial cells via the activation of NF-B.

The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses

Vaccines

COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to th...

Cytokines and Chemokines in SARS-CoV-2 Infections—Therapeutic Strategies Targeting Cytokine Storm

Biomolecules

The recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of coronavirus disease (COVID-19) and the associated ongoing pandemic, frequently leads to severe respiratory distress syndrome and pneumonia with fatal consequences. Although several factors of this infection and its consequences are not completely clear, the presence and involvement of specific chemokines is undoubtedly crucial for the development and progression of COVID-19. Cytokine storm and the often-resulting cytokine release syndrome (CRS) are pathophysiological hallmarks in COVID-19 infections related to its most severe and fatal cases. In this hyperinflammatory event, chemokines and other cytokines are highly upregulated and are therefore not fulfilling their beneficial function in the host response anymore but causing harmful effects. Here, we present the recent views on the involvement of chemokines and selected cytokines in COVID-19 and the therapeutics currently in cli...

Chemokine Levels among Patients with Middle East Respiratory Syndrome Coronavirus Infection

Vaccines

Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with significant morbidity and mortality due to intense pulmonary inflammation. Enhanced chemokine-mediated leukocyte infiltration in lungs has been linked with unfavorable outcomes with respect to the disease. This cross-sectional study assessed the levels of chemokines among 46 MERS-CoV-infected patients (19 asymptomatic and 27 symptomatic) and 52 healthy controls using a customized Luminex human chemokine magnetic multiplex panel. The plasma levels of interferon-inducible protein (IP)-10 (568.5 ± 114.7 vs. 55.19 ± 5.85 pg/mL; p < 0.0001), macrophage inflammatory protein (MIP)-1 alpha (MIP-1A) (30.78 ± 2.81 vs. 18.16 ± 0.91 pg/mL; p < 0.0001), MIP-1B (36.63 ± 4.25 vs. 25.26 ± 1.51 pg/mL; p < 0.003), monocyte chemoattractant protein (MCP)-1 (1267 ± 309.5 vs. 390.0 ± 35.51 pg/mL; p < 0.0002), and monokine-induced gamma interferon (MIG) (28.96 ± 3.93 vs. 16.29 ± 1.69 pg/mL; p < 0.001), interleukin (I...

High Circulating Levels of the Homeostatic Chemokines CCL19 and CCL21 Predict Mortality and Disease Severity in COVID-19

The Journal of Infectious Diseases

Background Immune dysregulation is a major factor in the development of severe coronavirus disease 2019 (COVID-19). The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is limited. We thus investigated the levels of these chemokines in COVID-19 patients. Methods Serial blood samples were obtained from patients hospitalized with COVID-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and 3-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. Results A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admissio...

Heightened Circulating Interferon-Inducible Chemokines, and Activated Pro-Cytolytic Th1-Cell Phenotype Features Covid-19 Aggravation in the Second Week of Illness

Frontiers in Immunology, 2020

Covid-19 features a delayed onset of critical illness occurring approximately one week from the beginning of symptoms, which corresponds to the bridging of innate and adaptive immunity. We reasoned that the immune events occurring at the turning point of disease might mark the direction toward pathogenic versus protective inflammatory responses. Subjects with either severe (s; PaO2/FiO2 ratio <200) or mild (m; PaO2/ FiO2 ratio>300) Covid-19 were enrolled. A range of chemokines and cytokines as well as reactive oxygen species (ROS) were measured in plasma. Dendritic and NK cell frequency, monocyte and B-/T-cell phenotype and SARS-CoV-2-specific T-cell responses were assessed in PBMC. Twenty mCovid-19 and 20 sCovid-19 individuals were studied. sCovid-19 patients displayed higher non-classical monocytes, plasma chemokines (CXCL8, CXCL9, CXCL10), cytokines (IL-6, IL-10), and ROS versus mCovid-19. sCovid-19 also showed significantly increased activated CD38+HLA-DR+ Tlymphocyte, and granzyme-B+/perforin+ pro-cytolytic T-cells. All Covid-19 patients showed SARS-CoV-2 specific-T-cell response with a predominance of Th1 bi-or trifunctional IFN-g/IL-2/TNF-a-expressing CD4+, while no difference according to disease severity was observed. Severe Covid-19 features heightened circulating IFNinducible chemokines and activated pro-cytolytic Th1 cell phenotype in the second week of illness, yet SARS-CoV-2-specific responses are similar to that of mild illness. Altogether, our observations suggest Th1 polarization coupled to higher cytolytic profile in sCovid-19 as correlate of disease pathogenesis and as potential targets to be investigated in the roadmap to therapy and vaccine development.

Profile of Circulatory Cytokines and Chemokines in Human Coronaviruses: A Systematic Review and Meta-Analysis

Frontiers in Immunology, 2021

BackgroundSARS, MERS, and COVID-19 share similar characteristics. For instance, the genetic homology of SARS-CoV-2 compared to SARS-CoV and MERS-CoV is 80% and 50%, respectively, which may cause similar clinical features. Moreover, uncontrolled release of proinflammatory mediators (also called a cytokine storm) by activated immune cells in SARS, MERS, and COVID-19 patients leads to severe phenotype development.AimThis systematic review and meta-analysis aimed to evaluate the inflammatory cytokine profile associated with three strains of severe human coronavirus diseases (MERS-CoV, SARS-CoV, and SARS-CoV-2).MethodThe PubMed, Embase, and Cochrane Library databases were searched for studies published until July 2020. Randomized and observational studies reporting the inflammatory cytokines associated with severe and non-severe human coronavirus diseases, including MERS-CoV, SARS-CoV, and SARS-CoV-2, were included. Two reviewers independently screened articles, extracted data, and asses...

Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness

American Journal of Physiology-Lung Cellular and Molecular Physiology

Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both “cytokine storm” and “immune suppression.” However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive ( n = 204) or -negative ( n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-1...