Mathematical models for stable matching problems with ties and incomplete lists (original) (raw)

2019, European Journal of Operational Research

We present new integer linear programming (ILP) models for N P-hard optimisation problems in instances of the Stable Marriage problem with Ties and Incomplete lists (SMTI) and its many-to-one generalisation, the Hospitals / Residents problem with Ties (HRT). These models can be used to efficiently solve these optimisation problems when applied to (i) instances derived from real-world applications, and (ii) larger instances that are randomlygenerated. In the case of SMTI, we consider instances arising from the pairing of children with adoptive families, where preferences are obtained from a quality measure of each possible pairing of child to family. In this case we seek a maximum weight stable matching. We present new algorithms for preprocessing instances of SMTI with ties on both sides, as well as new ILP models. Algorithms based on existing state-of-the-art models only solve 6 of our 22 real-world instances within an hour per instance, and our new models incorporating dummy variables and constraint merging, together with preprocessing and a warm start, solve all 22 instances within a mean runtime of a minute. For HRT, we consider instances derived from the problem of assigning junior doctors to foundation posts in Scottish hospitals. Here we seek a maximum size stable matching. We show how to extend our models for SMTI to HRT and reduce the average running time for real-world HRT instances by two orders of magnitude. We also show that our models outperform by a wide margin all known state-of-the-art models on larger randomly-generated instances of SMTI and HRT.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.