Cosmology in f(Q)f(Q)f(Q) gravity: A unified dynamical system analysis at background and perturbation levels (original) (raw)
Related papers
Cosmological dynamical systems in modified gravity
The European Physical Journal C
The field equations of modified gravity theories, when considering a homogeneous and isotropic cosmological model, always become autonomous differential equations. This relies on the fact that in such models all variables only depend on cosmological time, or another suitably chosen time parameter. Consequently, the field equations can always be cast into the form of a dynamical system, a successful approach to study such models. We propose a perspective that is applicable to many different modified gravity models and relies on the standard cosmological density parameters only, making our choice of variables model independent. The drawback of our approach is a more complicated constraint equation. We demonstrate our procedure studying various modified gravity models and show how much generic information can be extracted before a specific model is considered.
Modified gravity and cosmology
Physics Reports, 2012
In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f (R), general higher-order theories, Hořava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.
Modified Gravity and Cosmology: An Update by the CANTATA Network
2021
General Relativity and the ΛCDM framework are currently the standard lore and constitute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. All extended theories and scenarios are first examined under the light of theoretical consistency, and then are applied to various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology are able to offer recently. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are ...
Cosmological observations in a modified theory of gravity (MOG
2011
Our modified gravity theory (MOG) is a gravitational theory without exotic dark matter, based on an action principle. MOG has been used successfully to model astrophysical phenomena such as galaxy rotation curves, galaxy cluster masses, and lensing. MOG may also be able to account for cosmological observations. We assume that the MOG point source solution can be used to describe extended distributions of matter via an appropriately modified Poisson equation. We use this result to model perturbation growth in MOG and find that it agrees well with the observed matter power spectrum at present. As the resolution of the power spectrum improves with increasing survey size, however, significant differences emerge between the predictions of MOG and the standard ΛCDM model, as in the absence of exotic dark matter, oscillations of the power spectrum in MOG are not suppressed. We can also use MOG to model the acoustic power spectrum of the cosmic microwave background. A suitably adapted semi-analytical model offers a first indication that MOG may pass this test, and correctly model the peak of the acoustic spectrum.
Cosmology of generalized modified gravity models
Physical Review D, 2005
We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.
The subject of this paper is to investigate the weak regime covariant scalar-tensor-vector gravity (STVG) theory, known as the MOdified gravity (MOG) theory of gravity. First, we show that the MOG in the absence of scalar fields is converted into Λ(t), G(t) models. Time evolution of the cosmological parameters for a family of viable models have been investigated. Numerical results with the cosmological data have been adjusted. We've introduced a model for dark energy (DE) density and cosmological constant which involves first order derivatives of Hubble parameter. To extend this model, correction terms including the gravitational constant are added. In our scenario, the cosmological constant is a function of time. To complete the model, interaction terms between dark energy and dark matter (DM) manually entered in phenomenological form. Instead of using the dust model for DM, we have proposed DM equivalent to a barotropic fluid. Time evolution of DM is a function of other cosmological parameters. Using sophisticated algorithms, the behavior of various quantities including the densities, Hubble parameter, etc. have been investigated graphically. The statefinder parameters have been used for the classification of DE models. Consistency of the numerical results with experimental data of SneIa + BAO + CM B are studied by numerical analysis with high accuracy. PACS numbers: 98.80.Es, 95.36.+x , 04.80.-y, 06.20.Jr, 95.30.Ft
Higher-order gravity and the cosmological background of gravitational waves
Astroparticle Physics, 2008
The cosmological background of gravitational waves can be tuned by the higher-order corrections to the gravitational Lagrangian. In particular, it can be shown that assuming R 1+ǫ , where ǫ indicates a generic (eventually small) correction to the Hilbert-Einstein action in the Ricci scalar R, gives a parametric approach to control the evolution and the production mechanism of gravitational waves in the early Universe.