Towards learning basic object affordances from object properties (original) (raw)
Related papers
A system for learning basic object affordances using a self-organizing map
2008
When a cognitive system encounters particular objects, it needs to know what effect each of its possible actions will have on the state of each of those objects in order to be able to make effective decisions and achieve its goals. Moreover, it should be able to generalize effectively so that when it encounters novel objects, it is able to estimate what effect its actions will have on them based on its experiences with previously encountered similar objects. This idea is encapsulated by the term "affordance", e.g. "a ball affords being rolled to the right when pushed from the left." In this paper, we discuss the development of a cognitive vision platform that uses a robotic arm to interact with household objects in an attempt to learn some of their basic affordance properties. We outline the various sensor and effector module competencies that were needed to achieve this and describe an experiment that uses a self-organizing map to integrate these modalities in a working affordance learning system.
Unsupervised learning of basic object affordances from object properties
2009
Affordance learning has, in recent years, been generating heightened interest in both the cognitive vision and developmental robotics communities. In this paper we describe the development of a system that uses a robotic arm to interact with household objects on a table surface while observing the interactions using camera systems. Various computer vision methods are used to derive, firstly, object property features from intensity images and range data gathered before interaction and, subsequently, result features derived from video sequences gathered during and after interaction. We propose a novel affordance learning algorithm that automatically discretizes the result feature space in an unsupervised manner to form affordance classes that are then used as labels to train a supervised classifier in the object property feature space. This classifier may then be used to predict affordance classes, grounded in the result space, of novel objects based on object property observations.
2010
For a developmental robotic system to function successfully in the real world, it is important that it be able to form its own internal representations of affordance classes based on observable regularities in sensory data. Usually successful classifiers are built using labeled training data, but it is not always realistic to assume that labels are available in a developmental robotics setting. There does, however, exist an advantage in this setting that can help circumvent the absence of labels: co-occurrence of correlated data across separate sensory modalities over time. The main contribution of this paper is an online classifier training algorithm based on Kohonen's learning vector quantization (LVQ) that, by taking advantage of this cooccurrence information, does not require labels during training, either dynamically generated or otherwise. We evaluate the algorithm in experiments involving a robotic arm that interacts with various household objects on a table surface where camera systems extract features for two separate visual modalities. It is shown to improve its ability to classify the affordances of novel objects over time, coming close to the performance of equivalent fully-supervised algorithms.
Learning Object Affordances: From Sensory-Motor Coordination to Imitation
IEEE Transactions on Robotics, 2008
Affordances encode relationships between actions, objects and effects. They play an important role on basic cognitive capabilities such as prediction and planning. We address the problem of learning affordances through the interaction of a robot with the environment, a key step to understand the world properties and develop social skills. We present a general model for learning object affordances using Bayesian networks integrated within a general developmental architecture for social robots. Since learning is based on a probabilistic model, the approach is able to deal with uncertainty, redundancy and irrelevant information. We demonstrate successful learning in the real world by having an humanoid robot interacting with objects. We demonstrate the benefits of the acquired knowledge in imitation games.
Learning intermediate object affordances: Towards the development of a tool concept
4th International Conference on Development and Learning and on Epigenetic Robotics, 2014
Inspired by the extraordinary ability of young infants to learn how to grasp and manipulate objects, many works in robotics have proposed developmental approaches to allow robots to learn the effects of their own motor actions on objects, i.e., the objects affordances. While holding an object, infants also promote its contact with other objects, resulting in object-object interactions that may afford effects not possible otherwise. Depending on the characteristics of both the held object (intermediate) and the acted object (primary), systematic outcomes may occur, leading to the emergence of a primitive concept of tool. In this paper we describe experiments with a humanoid robot exploring object-object interactions in a playground scenario and learning a probabilistic causal model of the effects of actions as functions of the characteristics of both objects. The model directly links the objects' 2D shape visual cues to the effects of actions. Because no object recognition skills are required, generalization to novel objects is possible by exploiting the correlations between the shape descriptors. We show experiments where an affordance model is learned in a simulated environment, and is then used on the real robotic platform, showing generalization abilities in effect prediction. We argue that, despite the fact that during exploration no concept of tool is given to the system, this very concept may emerge from the knowledge that intermediate objects lead to significant effects when acting on other objects.
Using a SOFM to learn Object Affordances
2004
Learning affordances can be defined as learning action potentials, i.e., learning that an object exhibiting certain regularities offers the possibility of performing a particular action. We propose a method to endow an agent with the capability of acquiring this knowledge by relating the object invariants with the potentiality of performing an action via interaction episodes with each object. We introduce a biologically inspired model to test this learning hypothesis and a set of experiments to check its validity in a Webots simulator with a Khepera robot in a simple environment. The experiment set aims to show the use of a GWR network to cluster the sensory input of the agent; furthermore, that the aforementioned algorithm for neural clustering can be used as a starting point to build agents that learn the relevant functional bindings between the cues in the environment and the internal needs of an agent.
Software Model of Autonomous Object Affordances Learning
2008
Abstract Learning to recognize affordances is an essential skill essential for safe autonomous operation and intelligent planning. In this thesis, we present a general learning algorithm for affordances that combines an active learning approach with decision tree induction–smart exploration with rule extraction. Our framework constructs a mental model of objects' affordances both through knowledge discovery and knowledge transfer scenarios in both propositional and relational domains.
Unsupervised learning of affordance relations on a humanoid robot
… and Information Sciences …, 2009
In this paper, we study how the concepts learned by a robot can be linked to verbal concepts that humans use in language. Specifically, we develop a simple tapping behaviour on the iCub humanoid robot simulator and allow the robot to interact with a set of objects of different types and sizes to learn affordance relations in its environment. The robot records its perception, obtained from a range camera, as a feature vector, before and after applying tapping on an object. We compute effect features by subtracting initial features from final ...
Self-Supervised Online Learning of Basic Object Push Affordances
International Journal of Advanced Robotic Systems, 2015
Continuous learning of object affordances in a cognitive robot is a challenging problem, the solution to which arguably requires a developmental approach. In this paper, we describe scenarios where robotic systems interact with household objects by pushing them using robot arms while observing the scene with cameras, and which must incrementally learn, without external supervision, both the effect classes that emerge from these interactions as well as a discriminative model for predicting them from object properties. We formalize the scenario as a multi-view learning problem where data co-occur over two separate data views over time, and we present an online learning framework that uses a self-supervised form of learning vector quantization to build the discriminative model. In various experiments, we demonstrate the effectiveness of this approach in comparison with related supervised methods using data from experiments performed using two different robotic platforms.