The site of an immune-selected point mutation in the transmembrane protein of human immunodeficiency virus type 1 does not constitute the neutralization epitope (original) (raw)
We previously reported the in vitro generation of a neutralization-resistant variant of the molecularly cloned isolate of human immunodeficiency virus type 1 (HIV-1), HXB2D. The molecular basis for the resistance was shown to be a point mutation in the env gene, causing the substitution of threonine for alanine at position 582 of gp41. Here, we show the variant to be resistant to syncytium inhibition as well as to neutralization by the immune-selecting serum. Moreover, 30% of HIV-positive human sera able to neutralize the parental virus have significantly decreased ability to neutralize the variant. As the A-to-T substitution thus has general relevance to the interaction of HIV-1 with the host immune system, we investigated further the biologic and immunologic bases for the altered properties. Synthetic peptides corresponding to the 582 region failed to compete in infectivity, neutralization, or syncytium inhibition assays and did not elicit neutralizing antibodies. Furthermore, hum...