Changes in mouse gastrointestinal microbial ecology with ingestion of kale (original) (raw)
Related papers
British Journal of Nutrition, 2005
We investigated the effect of Brussels sprouts, inulin and a fermented milk on the faecal microbiota diversity of human microbiota-associated (HMA) rats by PCR-temporal temperature gradient gel electrophoresis (PCR-TTGE) using universal and group-specific 16S rRNA gene primers. The HMA rats were submitted to a control diet for 10 d (initial time), then switched to the experimental diets for 4 weeks (final time). Using universal primers, the mean degree of similarity between all faecal samples at initial time was 80·8 %. In the group consuming the control diet throughout the experiment, the mean degree of similarity between the PCR-TTGE profiles at initial v. final time was 76·8 %, reflecting a spontaneous temporal variation. The mean degree of similarity between control and experimental groups at final time was lower, 72·4 %, 74·4 % and 75·6 % for inulin, Brussels sprouts and fermented milk, respectively, indicating a dietary effect on the predominant populations. Using specific primers, bifidobacteria could be detected only in those rats that had consumed inulin, showing a specific increasing effect of this dietary compound. The Lactobacillus population was very heterogeneous at initial time but tended to homogenize within each dietary group. At final time, caecal contents were collected for analysis of SCFA and b-glucuronidase activity. Inulin and Brussels sprouts increased the butyrate and acetate proportion, respectively, while the fermented milk did not modify the caecal biochemistry. This experiment shows for the first time that cruciferous vegetables are able to alter the diversity and the metabolic activities of the digestive microbiota in HMA rats. Human intestinal microbiota: Prebiotic: Probiotic: Brassica vegetables: TTGE * Corresponding author: Dr Sylvie Rabot, fax þ33 1 34 65 24 62, email Sylvie.Rabot@jouy.inra.fr Abbreviations: DGGE, denaturing gradient gel electrophoresis; HA, heterocyclic amine; HMA rat, human microbiota-associated rat; IQ, 2-amino-3-methylimidazo[4,5f ]quinoline; MRS, De Man, Rogosa and Sharpe; TGGE, temperature gradient gel electrophoresis; TTGE, temporal temperature gradient gel electrophoresis.
British Journal of …, 2005
We investigated the effect of Brussels sprouts, inulin and a fermented milk on the faecal microbiota diversity of human microbiota-associated (HMA) rats by PCR-temporal temperature gradient gel electrophoresis (PCR-TTGE) using universal and group-specific 16S rRNA gene primers. The HMA rats were submitted to a control diet for 10 d (initial time), then switched to the experimental diets for 4 weeks (final time). Using universal primers, the mean degree of similarity between all faecal samples at initial time was 80·8 %. In the group consuming the control diet throughout the experiment, the mean degree of similarity between the PCR-TTGE profiles at initial v. final time was 76·8 %, reflecting a spontaneous temporal variation. The mean degree of similarity between control and experimental groups at final time was lower, 72·4 %, 74·4 % and 75·6 % for inulin, Brussels sprouts and fermented milk, respectively, indicating a dietary effect on the predominant populations. Using specific primers, bifidobacteria could be detected only in those rats that had consumed inulin, showing a specific increasing effect of this dietary compound. The Lactobacillus population was very heterogeneous at initial time but tended to homogenize within each dietary group. At final time, caecal contents were collected for analysis of SCFA and b-glucuronidase activity. Inulin and Brussels sprouts increased the butyrate and acetate proportion, respectively, while the fermented milk did not modify the caecal biochemistry. This experiment shows for the first time that cruciferous vegetables are able to alter the diversity and the metabolic activities of the digestive microbiota in HMA rats. Human intestinal microbiota: Prebiotic: Probiotic: Brassica vegetables: TTGE * Corresponding author: Dr Sylvie Rabot, fax þ33 1 34 65 24 62, email Sylvie.Rabot@jouy.inra.fr Abbreviations: DGGE, denaturing gradient gel electrophoresis; HA, heterocyclic amine; HMA rat, human microbiota-associated rat; IQ, 2-amino-3-methylimidazo[4,5f ]quinoline; MRS, De Man, Rogosa and Sharpe; TGGE, temperature gradient gel electrophoresis; TTGE, temporal temperature gradient gel electrophoresis.
Nutrition, 2012
Objective: Enteric microbiota has been shown to be associated with various pathological conditions such as inflammatory bowel disease (IBD). This study aimed to determine the anti-inflammatory colonic effects of blueberries and broccoli in mdr1a À/À mice (IBD mouse model) through modification of microbiota composition in the gastrointestinal tract. Methods: The mdr1a À/À mice were fed either a control diet or the control diet supplemented with either 10% blueberry or broccoli for 21 wk. We investigated the influence of these diets on cecal microbiota and organic acids, colon morphology, and bacterial translocation to mesenteric lymph nodes. Results: In comparison to mice fed the control diet, blueberry and broccoli supplementation altered cecum microbiota similarly with the exception of Faecalibacterium prausnitzii, which was found to be significantly lower in broccoli-fed mice. High concentrations of butyric acid and low concentrations of succinic acid were observed in the cecum of broccoli-fed mice. Blueberry-and broccolisupplemented diets increased colon crypt size and the number of goblet cells per crypt. Only the broccoli-supplemented diet significantly lowered colonic inflammation compared to mice fed the control diet. Translocation of total microbes to mesenteric lymph nodes was lower in broccoli-fed mice compared to blueberry and control diet groups. Conclusion: Dietary blueberries and/or broccoli altered the composition and metabolism of the cecal microbiota and colon morphology. Overall, these results warrant further investigation through clinical studies to establish whether the consumption of blueberries and/or broccoli is able to alter the composition and metabolism of large intestine microbiota and promote colon health in humans.
Applied and Environmental Microbiology, 2002
Inulin is a well-known fructose-based prebiotic which has been shown to stimulate the growth of bifidobacteria, a bacterial group generally considered beneficial for intestinal health. In the present study, we analyzed inulin-associated shifts in the total bacterial community of wild-type mice and mice carrying a genetically inactivated adenomatous polyposis coli tumor suppressor gene by using DNA-based approaches independent of bacterial culturability. Mice were fed a high-fat, nonfiber diet with or without inulin inclusion at a 10% (wt/wt) concentration. Cecal contents were analyzed after 0, 3, and 9 weeks on the experimental diets. Inulin inclusion significantly affected the total bacterial community structure of the cecum as determined by both a nonselective percent-guanine-plus-cytosine-based profiling analysis and a more specific 16S ribosomal DNA sequence analysis. The shifts included stimulation of bifidobacteria and suppression of clostridia, but sequence comparison revealed that the major shifts were within previously unknown bacterial taxa. Concomitantly, significantly higher bacterial densities, determined by flow cytometry, were observed with the inulin-amended diet, and the metabolism of the cecal bacterial community was altered, as indicated by higher levels of residual short-chain fatty acids, particularly lactic acid. With regard to all of the microbiological parameters measured, the wild-type mice and mice carrying a genetically inactivated adenomatous polyposis coli tumor suppressor gene were essentially identical. Studies of the implications of pre-and probiotics may need to be expanded to include careful analysis of their effects on the entire microbial community, rather than just a few well-known species. Further studies are needed to increase our understanding of the possible roles of currently unknown gastrointestinal bacteria in health and disease.
The Effects of Vegetarian and Vegan Diets on Gut Microbiota
Frontiers in Nutrition
The difference in gut microbiota composition between individuals following vegan or vegetarian diets and those following omnivorous diets is well documented. A plant-based diet appears to be beneficial for human health by promoting the development of more diverse and stable microbial systems. Additionally, vegans and vegetarians have significantly higher counts of certain Bacteroidetes-related operational taxonomic units compared to omnivores. Fibers (that is, non-digestible carbohydrates, found exclusively in plants) most consistently increase lactic acid bacteria, such as Ruminococcus, E. rectale, and Roseburia, and reduce Clostridium and Enterococcus species. Polyphenols, also abundant in plant foods, increase Bifidobacterium and Lactobacillus, which provide anti-pathogenic and anti-inflammatory effects and cardiovascular protection. High fiber intake also encourages the growth of species that ferment fiber into metabolites as short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. The positive health effects of SCFAs are myriad, including improved immunity against pathogens, blood-brain barrier integrity, provision of energy substrates, and regulation of critical functions of the intestine. In conclusion, the available literature suggests that a vegetarian/vegan diet is effective in promoting a diverse ecosystem of beneficial bacteria to support both human gut microbiome and overall health. This review will focus on effects of different diets and nutrient contents, particularly plant-based diets, on the gut microbiota composition and production of microbial metabolites affecting the host health.
Dietary phytochemicals, gut microbiota composition, and health outcomes in human and animal models
Bioscience of Microbiota, Food and Health
The role of the composition of the gut microbiota on human health is not well understood. However, during the past decade, an increased emphasis has been placed on the influence of the impact of nutrition on the composition of gut microbiota and how the gut microbiota affects human health. The current review focuses on the role of some of the most studied phytochemicals on the composition of the gut microbiota. First, the review highlights the state of the research evidence regarding dietary phytochemical consumption and gut microbiota composition, including the influence of phytochemicals such as polyphenols, glucosinolates, flavonoids, and sterols that are present in vegetables, nuts, beans, and other foods. Second, the review identifies changes in health outcomes with altered gut microbiota composition, in both animal and human model studies. Third, the review highlights research that includes both associations between dietary phytochemical consumption and gut microbiota composition, and associations between the gut microbiota composition and health outcomes, in order to elucidate the role of the gut microbiota in the relationship between dietary phytochemical consumption and health outcomes in humans and animals. The current review indicated that phytochemicals can beneficially alter gut microbiota composition and decrease the risk for some diseases, such as cancers, and improve some cardiovascular and metabolic risk biomarkers. There is an urgent demand for high-quality studies that determine the relationships between the consumption of phytochemicals and health outcomes, examining gut microbiota as a moderator or mediator.
Bowel Microbiota Moderate Host Physiological Responses to Dietary Konjac in Weanling Rats1–3
The Journal of Nutrition, 2013
Diets rich in complex carbohydrates that resist digestion in the small bowel can alter large bowel ecology and microbiota biochemistry because the carbohydrates become substrates for bacterial growth and metabolism. Conventional or germfree weanling rats were fed a control diet or diets containing 1.25, 2.5, or 5% konjac (KJ), a commonly used ingredient in Asian foods, for 28 d. In the absence of bowel microbiota, 5% KJ elicited a significant increase in colonic goblet cell numbers and increased expression of mast cell protease genes and of genes that were overrepresented in the KEGG pathway ''Metabolism of xenobiotics by cytochrome P450'' relative to the control diet. In contrast, feeding 5% KJ caused few changes in mucosal gene expression in conventional rats. Analysis of the colonic microbiota of conventional rats fed KJ showed modest increases in the proportions of Actinobacteria and Bacteroidetes relative to rats fed the control diet, with a concomitant reduction in Firmicutes, which included a 50% reduction in Lactobacillus abundance. Colonic concentrations of short-chain fatty acids and colonic crypt lengths were increased by feeding KJ. Goblet cell numbers were greater in conventional rats fed KJ relative to the control diet but were lower compared with germ-free animals. Serum metabolite profiles were different in germ-free and conventional rats. Metabolites that differed in concentration included several phospholipids, a bile acid metabolite, and an intermediate product of tryptophan metabolism. Overall, KJ in the diet was potentially damaging to the bowel mucosa and produced a protective response from the host. This response was reduced by the presence of the bowel microbiota, which therefore ameliorated potentially detrimental effects of dietary KJ.
Journal of Functional Foods, 2017
Pulses are rich in fermentable fibre and phenolic compounds that have the potential to modify baseline function within the gut microenvironment (microbiota and epithelial barrier), thereby mitigating gutassociated diseases. The objective was to assess the gut health promoting effects of dietary chickpea in C57BL/6 mice consuming a 20% cooked chickpea flour diet (CK) or an isocaloric control diet for 3 weeks. Gut health was enhanced by CK including (i) colon crypt mucus content and mucin mRNA expression, (ii) crypt length, proliferation, and epithelial barrier junctional components expression, (iii) anti-microbial defenses, and (iv) altered cecal and fecal microbiota community structure (e.g. increased Prevotella) with enhanced metagenomic functions (e.g. increased flavonoid biosynthesis, butanoate metabolism), and microbial activity (increased short chain fatty acid production). Collectively, CK modulated the baseline function of the colonic microenvironment (microbiome and epithelial barrier), thereby priming colonic function such that the severity of gut-associated diseases could be mitigated.