Comprehensive fruit quality assessment and identification of aroma-active compounds in green pepper (Capsicum annuum L.) (original) (raw)

Abstract

The wrinkled pepper (Capsicum annuum L.) is a type of chili pepper domesticated in northwestern China, with a characteristic flavor. Fifteen wrinkled and four smooth-skinned pepper varieties were evaluated for morphology, texture, color, nutrients, capsaicinoids, and volatile compounds at the mature fruit stage. The sensory evaluation showed wrinkled pepper was superior to smooth pepper in texture, and it has a highly significant correlation (p < 0.01) with cuticle thickness, maximum penetrating force, lignin content, and moisture content. Citric acid was the major organic acid in peppers, accounting for 39.10–63.55% of the total organic acids, followed by quininic acid. The average oxalic acid content of smooth peppers was 26.19% higher than that of wrinkled peppers. The pungency of wrinkled pepper fruits ranged from 1748.9 to 25529.4 SHU, which can be considered slightly to very spicy, while the four smooth varieties ranged between 866.63 and 8533.70 SHU, at slightly to moderat...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (55)

  1. Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and beyond color: comparative overview of functional quality of tomato and watermelon fruits. Front Plant Sci. (2019) 10:769. doi: 10.3389/fpls.2019.00769
  2. Tieman D, Zhu G, Resende MF Jr, Lin T, Nguyen C, Bies D, et al. A chemical genetic roadmap to improved tomato flavor. Science. (2017) 355:391-4. doi: 10. 1126/science.aal1556
  3. Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry. (2011) 72:1358-70. doi: 10.1016/j.phytochem.2011.03.016
  4. Reilly CA, Crouch DJ, Yost GS. Quantitative analysis of capsaicinoids in fresh peppers, oleoresin capsicum and pepper spray products. J Forensic Sci. (2001) 46:502-9. doi: 10.1520/JFS14999J
  5. Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG. Secondary metabolites of capsicum species and their importance in the human diet. J Nat Prod. (2013) 76:783-93. doi: 10.1021/np300898z
  6. Baenas N. Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages-sciencedirect. Food Chem. (2019) 274:872-85. doi: 10.1016/j.foodchem.2018.09.047
  7. Dias JS. Nutritional quality and health benefits of vegetables: a review. Food Nutr Sci. (2012) 03:1354-74. doi: 10.4236/fns.2012.310179
  8. Meckelmann SW, Riegel DW, van Zonneveld MJ, Ríos L, Peña K, Ugas R, et al. Compositional characterization of native peruvian chili peppers (Capsicum spp.). J Agr Food Chem. (2013) 61:2530-7. doi: 10.1021/jf304986q
  9. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. (2014) 46:270-8. doi: 10.1038/ng.2877
  10. Giuffrida D, Dugo P, Torre G, Bignardi C, Cavazza A, Corradini C, et al. Characterization of 12 capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. (2013) 140:794-802. doi: 10.1016/j. foodchem.2012.09.060
  11. Bae H, Jayaprakasha GK, Crosby K, Sun Y, Leskovar DI, Jifon J, et al. Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. J Food Compos Anal. (2014) 33:195-202. doi: 10.1016/j.jfca.2013.11.009
  12. Zhu G, Gou J, Klee H, Huang S. Next-gen approaches to flavor-related metabolism. Annu Rev Plant Biol. (2019) 70:187-212. doi: 10.1146/annurev- arplant-050718-100353
  13. Junior SB, Melo A, Zini CA, Teixeira Godoy H. Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction. J Chromatogr A. (2011) 1218:3345-50. doi: 10.1016/j. chroma.2010.12.060
  14. Forero M, Quijano CE, Pino JA. Volatile compounds of chile pepper (Capsicum annuum L. var. glabriusculum) at two ripening stages. Flavour Frag J. (2010) 24:25-30. doi: 10.1002/ffj.1913
  15. de Rijke E, Fellner C, Westerveld J, Lopatka M, Cerli C, Kalbitz K, et al. Determination of n-alkanes in C. annuum (bell pepper) fruit and seed using GC- MS: comparison of extraction methods and application to samples of different geographical origin. Anal Bioanal Chem. (2015) 407:5729-38. doi: 10.1007/s00216- 015-8755-6
  16. Liu Y-L, Chen S-Y, Liu G-T, Jia XY, Haq S, Deng ZJ, et al. Morphological, physiochemical, and transcriptome analysis and CaEXP4 identification during pepper (Capsicum annuum L.) fruit cracking. Sci Hortic. (2022) 297:110982. doi: 10.1016/j.scienta.2022.110982
  17. Li CG, Dong LY, Ji YY. Study on extraction of cellulose and removal of hemicelluloses and lignin from peanut hull. China Agric Sci Bull. (2010) 26:350-4.
  18. Kwaw E, Ma Y, Tchabo W, Sackey AS, Apaliya MT, Xiao L, et al. Ultrasonication effects on the phytochemical, volatile and sensorial characteristics of lactic acid fermented mulberry juice. Food Biosci. (2018) 24:17-25. doi: 10.1016/ j.fbio.2018.05.004
  19. Tran T, Aimla-Or S, Jitareerat P, Srilaong V. Fumigation with ozone to extend the storage life of mango fruit cv nam dok mai No.
  20. Agric Sci J. (2013) 44:663-72.
  21. Arya SP, Mahajan M, Jain P. Non-spectrophotometric methods for the determination of vitamin C. Anal Chim Acta. (2000) 417:14. doi: 10.1016/S0003- 2670(00)00909-0
  22. Irigoyen J, Einerich D, Sánchez-Díaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol Plant. (1992) 84:55-60. doi: 10.1111/j.1399-3054.1992. tb08764.x 22. Barbero G, Liazid A, Palma M, Barroso CG. Fast determination of capsaicinoids from peppers by high-performance liquid chromatography using a reversed phase monolithic column. Food Chem. (2008) 107:1276-82. doi: 10.1016/ j.foodchem.2007.06.065
  23. Wu Y, Zhang W, Song S, Xu W, Zhang C, Ma C. Evolution of volatile compounds during the development of muscat grape 'shine muscat' (Vitis labrusca× V. vinifera). Food Chem. (2019) 309:125778. doi: 10.1016/j.foodchem. 2019.125778
  24. Zhao D, Tang J, Ding X. Analysis of volatile components during potherb mustard (Brassica juncea, Coss.) pickle fermentation using SPME-GC-MS. Food Sci Tech. (2007) 40:439-47. doi: 10.1016/j.lwt.2005.12.002
  25. Eaaa B, Ma H, Aheto AA, Agyekum AA, Zhou C. Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. Food Sci Tech. (2020) 117:108666. doi: 10.1016/j.lwt.2019.108666
  26. Wei S, Xiao X, Wei L, Li L, Li G, Liu F, et al. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chem. (2020) 340:128166. doi: 10.1016/j.foodchem.2020.128166
  27. López de Lerma N, Peinado RA, Puig-Pujol A, Mauricio JC, Moreno J, García-Martínez T, et al. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem. (2018) 250:22-9. doi: 10.1016/j.foodchem.2018.
  28. Lu Z, Li J, Yuan C, Xi B, Yang B, Fu Y. Evaluation of mutton quality characteristics of dongxiang tribute sheep based on membership function and gas chromatography and ion mobility spectrometry. Front Nutr. (2022) 9:852399. doi: 10.3389/fnut.2022.852399
  29. Jarret RL, Berke T, Baldwin EA, Antonious GF. Variability for free sugars and organic acids in Capsicum Chinense. Chem Biodivers. (2009) 6:138-45. doi: 10.1002/cbdv.200800046
  30. Mao S, Lu C, Li M, Ye Y, Wei X, Tong H. Identification of key aromatic compounds in congou black tea by partial least-square regression with variable importance of projection scores and gas chromatography-mass spectrometry/gas chromatography-olfactometry. J Sci Food Agric. (2018) 98:5278-86. doi: 10.1002/ jsfa.9066 31. van Gemert LJ. Odour thresholds: compilations of odour threshold values in air, water and other media. Utrecht: Oliemans Punter (2011).
  31. Penchaiya P, Bobelyn E, Verlinden BE, Nicolaï BM, Saeys W. Non-destructive measurement of firmness and soluble solids content in bell pepper using NIR spectroscopy. J Food Eng. (2009) 94:267-73. doi: 10.1016/j.jfoodeng.2009.03.018 33. del Río JC, Rencoret J, Gutiérrez A, Elder T. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain Chem Eng. (2020) 8:4997-5012. doi: 10.1021/acssuschemeng.0c01109
  32. Fratianni F, d'Acierno A, Cozzolino A, Spigno P, Riccardi R, Raimo F, et al. Biochemical characterization of traditional varieties of sweet pepper (Capsicum annuum L.) of the campania region, southern Italy. Antioxidants. (2020) 9:556. doi: 10.3390/antiox9060556
  33. Lemos VC, Reimer JJ, Wormit A. Color for life: biosynthesis and distribution of phenolic compounds in (Capsicum annuum). Agriculture. (2019) 9:81. doi: 10.3390/agriculture9040081
  34. Zewdie Y, Bosland PW. Pungency of chile (Capsicum annuum L.) fruit is affected by node position. HortScience. (2000) 35:1174. doi: 10.1023/A: 1026555603552
  35. Han K, Jeong H-J, Sung J, Keum YS, Cho MC, Kim JH, et al. Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol. Breed. (2013) 31:537-48. doi: 10.1007/s11032-012-9811-y
  36. Rathnayaka R, Kondo F, Prabandaka SS, Nemoto K, Matsushima K. Drought stress induced an increase in the pungency and expression of capsaicinoid biosynthesis genes in chili pepper (Capsicum annuum L.). Hortic J. (2021) 90:410-9. doi: 10.2503/hortj.UTD-282
  37. Tewksbury J, Nabhan GP. Directed deterrence by capsaicin in chillies. Nature. (2001) 412:403-4.
  38. Weiss EA. Spice crops. New York, NY: CABI Publishing International (2002).
  39. Howard LR, Smith RT, Wagner AB, Villalon B, Burns EE. Provitamin a and ascorbic acid aontent of fresh pepper cultivars (Capsicum annuum) and processed jalapeos. J Food Sci. (2006) 59:362-5. doi: 10.1111/j.1365-2621.1994.tb06967.x 42. Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. (2003) 2:7. doi: 10.1186/1475-2891-2-7
  40. Rosa-Martínez E, García-Martínez MD, Adalid-Martínez AM, Pereira-Dias L, Casanova C, Soler E, et al. Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions -sciencedirect. Food Res Int. (2021) 147:110531. doi: 10.1016/j.foodres.2021.110531
  41. Palmieri F, Estoppey A, House GL, Lohberger A, Bindschedler S, Chain PSG, et al. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions. Adv Appl Microbiol. (2019) 106:49-77. doi: 10.1016/bs.aambs.2018.10.001 45. Cuevas-Glory LF, Sosa-Moguel O, Pino J, Sauri-Duch E. GC-MS characterization of volatile compounds in habanero pepper (Capsicum chinense Jacq.) by optimization of headspace solid-phase microextraction conditions. Food Anal Method. (2015) 8:1005-13. doi: 10.1007/s12161-014-9980-x
  42. Ye Z, Shang Z, Li M, Qu Y, Long H, Yi J. Evaluation of the physiochemical and aromatic qualities of pickled Chinese pepper (Paojiao) and their influence on consumer acceptability by using targeted and untargeted multivariate approaches. Food Res. Int. (2020) 137:109535. doi: 10.1016/j.foodres.2020.109535
  43. Pino J, Gonzalez M, Ceballos L, Centurión-Yah AR, Trujillo-Aguirre J, Latournerie-Moreno L, et al. Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum chinense jack.) cultivars grown in Yucatan. Food Chem. (2007) 104:1682-6. doi: 10.1016/j.foodchem.2006.
  44. Gahungu A, Ruganintwali E, Karangwa E, Zhang X. Volatile compounds and capsaicinoid content of fresh hot peppers (Capsicum chinense) scotch bonnet variety at red stage. Adv J Food Sci Technol. (2011) 3:211-8. doi: 10.1002/jsfa.3511
  45. El-Ghorab A, Javed Q, Anjum FS, Hamed F, Shaaban HA. Pakistani bell pepper (Capsicum annum L.): chemical compositions and its antioxidant activity. Int J Food Prop. (2013) 16:18-32. doi: 10.1080/10942912.2010.513616
  46. Pino J, Fuentes V, Barrios O. Volatile constituents of cachucha peppers (Capsicum chinense Jacq.) grown in Cuba. Food Chem. (2011) 125:860-4. doi: 10.1016/j.foodchem.2010.08.073
  47. Junior SB, Março PH, Valderrama P, Cardoso F, Aranda MS, Zini CA, et al. Analysis of volatile compounds in Capsicum spp. by headspace solid-phase microextraction and GC × GC-TOFMS. Anal Method. (2014) 7:521-9. doi: 10. 1039/C4AY01455C
  48. Wang L, Baldwin EA, Bai J. Recent advance in aromatic volatile research in tomato fruit: the metabolisms and regulations. Food Bioproc Tech. (2016) 9:203-16. doi: 10.1007/s11947-015-1638-1
  49. Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. (2013) 198:16-32. doi: 10.1111/nph.12145
  50. Ul Hassan MN, Zainal Z, Ismail I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J. (2015) 13:727-39. doi: 10.1111/pbi.12368
  51. Suklje K, Lisjak K, Česnik HB, Janeš L, Du Toit W, Coetzee Z, et al. Classification of grape berries according to diameter and total soluble solids to study the effect of light and temperature on methoxypyrazines, glutathione and hydroxycinnamates evolution during berry ripening of Sauvignon Blanc (Vitis vinifera L.). J Agric Food Chem. (2012) 60:9454-61. doi: 10.1021/jf3020766
  52. Huffman VL, Schadle ER, Villalon B, Burns EE. Volatile components and pungency in fresh and processed jalapeno peppers. J Food Sci. (2010) 43:1809-11. doi: 10.1111/j.1365-2621.1978.tb07419.x
  53. Kollmannsberger H, Rodríguez-Burruezo A, Nitz S, Nuez F. Volatile and capsaicinoid composition of aji (Capsicum baccatum) and rocoto (Capsicum pubescens), two andean species of chile peppers. J Sci Food Agric. (2011) 91:1598- 611. doi: 10.1002/jsfa.4354
  54. Zeng L, Xiao Y, Zhou X, Yu J, Jian G, Li G, et al. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chem. (2021) 345:128752. doi: 10.1016/j.foodchem.2020.128752
  55. Liu GF, Liu JJ, He ZR, Wang FM, Yang H, Yan YF, et al. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant Cell Environ. (2018) 41:176-86. doi: 10.1111/pce.