Blood Metabolome Changes Before and After Bariatric Surgery: A (1)H NMR-Based Clinical Investigation (original) (raw)
Related papers
Omics : a journal of integrative biology, 2016
Roux-en-Y gastric bypass (RYGB) surgery goes beyond weight loss to induce early beneficial hormonal changes that favor glycemic control. In this prospective study, ten obese subjects diagnosed with type 2 diabetes underwent bariatric surgery. Mixed-meal tolerance test was performed before and 12 months after RYGB, and the outcomes were investigated by a time-resolved hydrogen nuclear magnetic resonance ((1)H NMR)-based metabolomics. To the best of our knowledge, no previous omics-driven study has used time-resolved (1)H NMR-based metabolomics to investigate bariatric surgery outcomes. Our results presented here show a significant decrease in glucose levels after bariatric surgery (from 159.80 ± 61.43 to 100.00 ± 22.94 mg/dL), demonstrating type 2 diabetes remission (p < 0.05). The metabolic profile indicated lower levels of lactate, alanine, and branched chain amino acids for the operated subject at fasting state after the surgery. However, soon after food ingestion, the levels o...
Application of Metabolomics to Study Effects of Bariatric Surgery
Journal of Diabetes Research
Bariatric surgery was born in the 1950s at the University of Minnesota. From this time, it continues to evolve and, by the same token, gives new or better possibilities to treat not only obesity but also associated comorbidities. Metabolomics is also a relatively young science discipline, and similarly, it shows great potential for the comprehensive study of the dynamic alterations of the metabolome. It has been widely used in medicine, biology studies, biomarker discovery, and prognostic evaluations. Currently, several dozen metabolomics studies were performed to study the effects of bariatric surgery. LC-MS and NMR are the most frequently used techniques to study main effects of RYGB or SG. Research has yield many interesting results involving not only clinical parameters but also molecular modulations. Detected changes pertain to amino acid, lipids, carbohydrates, or gut microbiota alterations. It proves that including bariatric surgery to metabolic surgery is warranted. However,...
PLOS ONE, 2016
Bariatric surgery is currently one of the most effective treatments for obesity and leads to significant weight reduction, improved cardiovascular risk factors and overall survival in treated patients. To date, most studies focused on short-term effects of bariatric surgery on the metabolic profile and found high variation in the individual responses to surgery. The aim of this study was to identify relevant metabolic changes not only shortly after bariatric surgery (Roux-en-Y gastric bypass) but also up to one year after the intervention by using untargeted metabolomics. 132 serum samples taken from 44 patients before surgery, after hospital discharge (1-3 weeks after surgery) and at a 1-year follow-up during a prospective study (NCT01271062) performed at two study centers (Austria and Switzerland). The samples included 24 patients with type 2 diabetes at baseline, thereof 9 with diabetes remission after one year. The samples were analyzed by using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS, HILIC-QExactive). Raw data was processed with XCMS and drift-corrected through quantile regression based on quality controls. 177 relevant metabolic features were selected through Random Forests and univariate testing and 36 metabolites were identified. Identified metabolites included trimethylamine-N-oxide, alanine, phenylalanine and indoxyl-sulfate which are known markers for cardiovascular risk. In addition we found a significant decrease in alanine after one year in the group of patients with diabetes remission relative to non-remission. Our analysis highlights the importance of assessing multiple points in time in subjects undergoing bariatric surgery to enable the identification of biomarkers for treatment response, cardiovascular benefit and diabetes remission. Key-findings include different trend pattern over time for various metabolites and demonstrated that short term changes should not necessarily be used to identify important long term effects of bariatric surgery.
Frontiers in Endocrinology
AimsTo test the hypothesis that adipose tissue gene expression patterns would be affected by metabolic surgery and we aimed to identify genes and metabolic pathways as well as metabolites correlating with metabolic changes following metabolic surgery.Materials and MethodsThis observational study was conducted at the Obesity Unit at the Catholic University Hospital of the Sacred Heart in Rome, Italy. Fifteen patients, of which six patients underwent Roux-en-Y gastric bypass and nine patients underwent biliopancreatic diversion, were included. The participants underwent an oral glucose tolerance test and a hyperinsulinemic euglycemic clamp. Small polar metabolites were analyzed with a two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). Gene expression analysis of genes related to metabolism of amino acids and fatty acids were analyzed in subcutaneous adipose tissue. All procedures were performed at study start and at follow-up (after 185.3 ± 7...
Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss
Obesity (Silver Spring, Md.), 2016
To review the metabolomic studies carried out so far to identify metabolic markers associated with surgical and dietary treatments for weight loss in subjects with obesity. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Thirty-two studies successfully met the eligibility criteria. The metabolic adaptations shared by surgical and dietary interventions mirrored a state of starvation ketoacidosis (increase of circulating ketone bodies), an increase of acylcarnitines and fatty acid β-oxidation, a decrease of specific amino acids including branched-chain amino acids (BCAA) and (lyso)glycerophospholipids previously associated with obesity, and adipose tissue expansion. The metabolic footprint of bariatric procedures was specifically characterized by an increase of bile acid circulating pools and a decrease of ceramide levels, a greater perioperative decline in BCAA, and the rise of circulating serine and glycine, mirroring glycemi...
Scientific reports, 2017
Routine laboratory lipid assays include simple measurements of total cholesterol, triacylglycerols and HDL. However, lipids are a large group of compounds involved in many metabolic pathways, and their alterations may have serious health consequences. In this study, we used (1)H NMR to analyze lipids extracted from sera of 16 obese patients prior to and after bariatric surgeries. We observed a post-surgery decrease in serum concentrations of lipids from various groups. The hereby presented findings imply that (1)H NMR is suitable for rapid, simple and non-invasive detection of lipids from 30 structural groups, among them triacylglycerols, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, total phospholipids, total, free and esterified cholesterol, total and unsaturated fatty acids. NMR-based analysis of serum lipids may contribute to a substantial increase in the number of routinely determined markers from this group; therefore, it may find application in clinical assess...
Science Translational Medicine, 2011
Glycemic control is improved more after gastric bypass surgery (GBP) than after equivalent dietinduced weight loss in patients with morbid obesity and type 2 diabetes mellitus. We applied metabolomic profiling to understand the mechanisms of this better metabolic response after GBP. Circulating amino acids (AAs) and acylcarnitines (ACs) were measured in plasma from fasted subjects by targeted tandem mass spectrometry before and after a matched 10-kilogram weight loss induced by GBP or diet. Total AAs and branched-chain AAs (BCAAs) decreased after GBP, but not after dietary intervention. Metabolites derived from BCAA oxidation also decreased only after GBP. Principal components (PC) analysis identified two major PCs, one composed almost exclusively of ACs (PC1) and another with BCAAs and their metabolites as major contributors (PC2). PC1 and PC2 were inversely correlated with pro-insulin concentrations, the C-peptide response to oral glucose, and the insulin sensitivity index after weight loss, whereas PC2 was