Heavy points of a -dimensional simple random walk (original) (raw)

Abstract

For a simple symmetric random walk in dimension d ≥ 3, a uniform strong law of large numbers is proved for the number of sites with given local time up to time n.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (11)

  1. Csáki, E., Földes, A., Révész, P., Rosen, J. and Shi, Z.: Frequently visited sets for random walks. Preprint.
  2. Dvoretzky, A. and Erdős, P.: Some problems on random walk in space. Proc. Second Berkeley Symposium (1950), 353-368.
  3. Erdős, P. and Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hung. 11 (1960), 137-162.
  4. Griffin, P.: Accelerating beyond the third dimension: returning to the origin in simple random walk. Math. Scientist 15 (1990), 24-35.
  5. Hamana, Y.: On the central limit theorem for the multiple point range of random walk. J. Fac. Sci. Univ. Tokyo 39 (1992), 339-363.
  6. Hamana, Y.: On the multiple point range of three dimensional random walk. Kobe J. Math. 12 (1995), 95-122.
  7. Jain, N.C. and Pruitt, W.E.: The range of transient random walk. J. Analyse Math. 24 (1971), 369-393.
  8. Pitt, J.H.: Multiple points of transient random walk. Proc. Amer. Math. Soc. 43 (1974), 195-199.
  9. Révész, P.: Random Walk in Random and Non-Random Environments. World Scientific, Singapore, 1990.
  10. Révész, P.: The maximum of the local time of a transient random walk. Studia Sci. Math. Hungar. 41 (2004), 379-390.
  11. Spitzer, F.: Principles of Random Walk, 2nd. ed. Van Nostrand, Princeton, 1976.