CARBON NANOTUBES (original) (raw)
Related papers
Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century
American Journal of Physics, 2004
Introduction 1.1 The discovery of fullerene-related carbon nanotubes 1.2 Characteristics of multiwalled nanotubes 1.3 Single-walled nanotubes 1.4 Pre-1991 evidence for carbon nanotubes 1.5 Nanotube research 1.6 Organisation of the book References 2 Synthesis: Preparation methods, growth mechanisms and processing techniques 2.1 Production of multiwalled nanotubes: non-catalytic methods 2.1.1 The arc-evaporation technique 2.1.2 The quality of nanotube samples produced by arc-evaporation 2.1.3 Safety considerations 2.1.4 Condensation of carbon vapour in the absence of an electric field 2.1.5 Pyrolytic methods 2.1.6 Electrochemical synthesis of nanotubes 2.2 Experiments on the heat treatment of fullerene soot 2.3 Catalytically produced multiwalled nanotubes 2.3.1 Background 2.3.2 Growth mechanisms of catalytically produced nanotubes 2.3.3 Synthesis of aligned nanotubes by catalysis vii 2.4 Nanotubes on TEM support grids: a word of warning 2.5 Single-walled nanotubes 2.5.1 Discovery 2.5.2 Subsequent work on single-walled tubes 2.5.3 Nanotube 'ropes' 2.6 Theories of nanotube growth 2.6.1 General comments 2.6.2 Why do tubes remain open during growth? 2.6.3 Properties of the arc plasma 2.6.4 An alternative model 2.6.5 Growth of single-walled nanotubes 2.7 Purification of multiwalled tubes 2.8 Purification of single-walled tubes 2.9 Alignment of nanotube samples 2.10 Length control of carbon nanotubes 2.11 Discussion References 3 Structure 3.1 Classification of tubular biological structures 3.2 Bonding in carbon materials 3.3 The structure of carbon nanotubes: theoretical discussion 3.3.1 Vector notation for carbon nanotubes 3.3.2 Unit cells of nanotubes 3.3.3 Multiwalled nanotubes 3.3.4 Theory of nanotube capping 3.3.5 Symmetry classification of nanotubes 3.3.6 Elbow connections, tori and coils 3.3.7 Arrays of single-walled nanotubes 3.4 The physical stability of carbon nanotubes 3.5 Experimental studies of nanotube structure: multiwalled nanotubes 3.5.1 Techniques 3.5.2 The layer structure: experimental observations 3.5.3 The layer structure: models 3.5.4 Electron diffraction 3.5.5 Plan-view imaging by HREM 3.5.6 The cross-sectional shape of multiwalled nanotubes 3.5.7 HREM studies of cap structure 3.5.8 Elbow connections and branching structures viii Contents 3.6 Experimental studies of nanotube structure: single-walled nanotubes 3.6.1 High resolution electron microscopy and electron diffraction 3.6.2 Scanning probe microscopy 3.6.3 Nanotube hoops and diameter doubling 3.7 Structure of carbon nanoparticles 3.8 Nanocones 3.9 Discussion References 4 The physics of nanotubes 4.1 Electronic properties of graphite and carbon fibres 4.1.1 Band structure of graphite 4.1.2 Transport properties of graphite, disordered carbons and carbon fibres 4.1.3 Magnetoresistance of graphite and carbon fibres 4.2 Electronic properties of nanotubes: theory 4.2.1 Band structure of single-walled tubes 4.2.2 Band structure of multiwalled tubes 4.2.3 Electron transport in nanotubes 4.2.4 Nanotube junctions 4.2.5 Electronic properties of nanotubes in a magnetic field 4.3 Electronic properties of nanotubes: experimental measurements 4.3.1 Resistivity measurements on multiwalled nanotubes 4.3.2 Resistivity measurements on single-walled nanotubes 4.3.3 Doping of nanotube bundles 4.3.4 Electron spin resonance 4.4 Magnetic properties of nanotubes 4.5 Optical properties of nanotubes 4.6 Vibrational properties of nanotubes 4.6.1 Symmetry of vibrational modes 4.6.2 Experimental IR and Raman spectra: multiwalled nanotubes 4.6.3 Experimental IR and Raman spectra: single-walled nanotubes 4.7 Electron energy loss spectroscopy of nanotubes 4.8 Nanotube field emitters 4.9 Discussion References ix Contents 5 Nanocapsules and nanotest-tubes 5.1 Metallofullerenes 5.2 Filling nanotubes and nanoparticles by arc-evaporation 5.2.1 Early work 5.2.2 Further studies 5.3 Preparation of filled nanoparticles from microporous carbon 5.4 Properties of filled nanoparticles 5.4.1 Protection from environmental degradation 5.4.2 Encapsulation of magnetic materials 5.4.3 Encapsulation of radioactive materials 5.5 Technegas 5.6 Opening and filling of nanotubes using chemical methods and capillarity 5.6.1 The work of Ajayan and Iijima 5.6.2 Selective opening using gas-phase oxidants 5.6.3 Opening by treatment with nitric acid 5.6.4 Alternative liquid-phase oxidants 5.6.5 Filling with molten materials 5.6.6 Experiments on capillarity and wetting 5.6.7 Chemistry and crystallisation in nanotubes 5.6.8 Biological molecules in nanotubes 5.7 Filling of single-walled nanotubes 5.8 Storing gases in nanotubes 5.9 Discussion References 6 The ultimate carbon fibre? The mechanical properties of carbon nanotubes 6.1 Conventional carbon fibres 6.2 Graphite whiskers 6.3 Catalytically grown carbon fibres 6.4 Mechanical properties of carbon nanotubes 6.4.1 Theoretical predictions 6.4.2 Experimental observations using TEM: qualitative 6.4.3 Experimental observations using TEM: quantitative 6.4.4 Experimental observations using scanning probe microscopy 6.5 Carbon nanotube composites 6.5.1 Introduction 6.5.2 Bonding between nanotubes and matrix x Contents 6.5.3 Aspect ratio 6.5.4 Experiments on incorporating nanotubes into a matrix 6.5.5 Applications of nanotube-containing composites 6.6 Nanotubes as tips for scanning probe microscopes 6.7 Discussion References 7 Curved crystals, inorganic fullerenes and nanorods 7.1 Chrysotile and imogolite 7.2 Inorganic fullerenes from layered metal dichalcogenides 7.2.1 Synthesis of chalcogenide fullerenes 7.2.2 Structure of chalcogenide fullerenes 7.2.3 Inorganic fullerenes as solid-state lubricants 7.3 Nanotubes and nanoparticles containing boron and nitrogen 7.3.1 Boron-carbon-nitride tubes 7.3.2 Pure boron nitride tubes and nanoparticles 7.3.3 Structure of boron nitride tubes and nanoparticles 7.4 Carbide nanorods 7.5 Discussion References 8 Carbon onions and spheroidal carbon 8.1 Carbon onions 8.1.1 Discovery 8.1.2 Ugarte's experiments: irradiation of cathodic soot 8.1.3 Production of onions from other carbons 8.1.4 The structure of carbon onions 8.1.5 Formation mechanism of carbon onions 8.1.6 Stability of carbon onions 8.1.7 Bulk synthesis of carbon onions 8.1.8 The formation of diamond inside carbon onions 8.2 Spheroidal carbon particles in soot 8.2.1 Background 8.2.2 Growth mechanisms: the traditional view 8.2.3 The icospiral growth mechanism 8.2.4 The structure of carbon black 8.3 Spherulitic graphite cast iron 8.3.1 History 8.3.2 The structure of spherulitic graphite 8.3.3 The precipitation process xi Contents 8.4 Spheroidal structures in mesophase pitch 8.5 Discussion References 9 Future directions 9.1 Towards a carbon nanotube chemistry 9.2 New all-carbon structures 9.3 Nanotubes in nanotechnology 9.4 Final thoughts References Name index Subject index xii Contents
Nanotechnology and nanostructured materials: trends in carbon nanotubes
Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology, Vol. 28(1), pp. 16-30, 2004
Carbon nanotubes have attracted the attention of many researchers since their discovery last decade. These carbon molecules are tiny tubes with diameters down to 0.4 nm, while their lengths can grow up to a million times their diameter. Using their remarkable electrical properties, simple electronic logic circuits have been built. These structures are promising for the semiconductor industry which is leading the search for miniaturisation. They are not only very good conductors, but they also appear to be the yet found material with the biggest specific stiffness, having half the density of aluminium. This paper is written to give a consolidated view of the synthesis, the properties and applications of carbon nanotubes, with the aim of drawing attention to useful available information and to enhancing interest in this new highly advanced technological field for the researcher and the manufacturing engineer.
Carbon Nanotubes--the Route Toward Applications
The following resources related to this article are available online at Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
An Overview on Carbon Nanotubes
2012
ABSTRACT: In different fields like semiconductors, field emission, conductive plastics, energy storage, conductive adhesives and connectors, molecular electronics, thermal materials carbon nanotubes are applicable. Carbon nanotubes are generally produced by three main techniques: arc discharge, laser ablation, chemical vapour deposition. In arc discharge, a vapour is created by an arc discharge between two carbon electrodes with or without catalyst. Nanotubes self-assemble from the resulting carbon vapour. In the laser ablation technique, a high-power laser beam impinges on a volume of carbon -containing feedstock gas (methane or carbon monoxide). At the moment, laser ablation produces a small amount of clean nanotubes, whereas arc discharge methods generally produce large quantities of impure material. In general, chemical vapour deposition (CVD) results in Multi Walled Nanotubes or poor quality Single Walled Nanotubes. The SWNTs produced with CVD have a large diameter range, which...
Carbon Nanotubes: Fabrication, Properties and Applications
Nausivios Chora, A Journal in Naval Science and Technology, Vol. 4, pp. 180-191, 2012
Carbon nanotubes are in the forefront of nanomaterials research since their discovery last decade. These carbon molecules are tiny tubes with diameters down to 0.4 nm, while their lengths can grow up to a million times their diameter. In this paper the most common fabrication methods for Carbon Nanotubes are explained and their remarkable properties are portrayed, namely mechanical, electrical and electronic properties. Finally, some applications of Carbon Nanotubes based on the aforementioned properties are discussed.
Carbon Nanotubes in Engineering Applications: A Review
Carbon nanotubes are molecular-scale tubes of graphite carbon that possess superior properties. They are the strongest and stiffest fibres with Young’s modulus 1 TPa and maximum tensile strength of 63 GPa. Carbon nanotubes are widely used in Biologi- cal, Chemical, Medical, Material Science and Engineering applications. This review outlines the engineering applications of carbon nanotubes and discusses benefits and concerns associated with their uses. Many research works have been done on this particular topic and various technologies have been proposed and applied at experimental and field levels. It is planned to identify the applica- tions of carbon nanotubes from engineering point of view.