Role of working memory load on selective attention to affectively valent information (original) (raw)
Related papers
Whereas attentional interference of negative information has previously been assumed to be automatic, the present research hypothesised that this effect depends on the availability of working-memory resources. In two experiments, participants judged the gender of angry versus happy faces. Working-memory load was manipulated by the presence or absence of a math task (Study 1) or mental rehearsal of a one-versus 8-digit number (Study 2). The results showed that angry faces interfered more with gender naming than happy faces, but only when working-memory load was low. As such, attentional interference of negative stimulus features can be modulated by top-down attentional control processes.
Load theory of selective attention and cognitive control.
2004
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention.
Working memory load and distraction: dissociable effects of visual maintenance and cognitive control
Attention, Perception, & Psychophysics, 2014
We establish a new dissociation between the roles of working memory (WM) cognitive control and visual maintenance in selective attention as measured by the efficiency of distractor rejection. The extent to which focused selective attention can prevent distraction has been shown to critically depend on the level and type of load involved in the task. High perceptual load that consumes perceptual capacity leads to reduced distractor processing, whereas high WM load that reduces WM ability to exert priority-based executive cognitive control over the task results in increased distractor processing (e.g., Lavie, Trends in Cognitive Sciences, 9(2), [75][76][77][78][79][80][81][82] 2005). WM also serves to maintain task-relevant visual representations, and such visual maintenance is known to recruit the same sensory cortices as those involved in perception (e.g., Pasternak & Greenlee, Nature Reviews Neuroscience, 6(2), 97-107, 2005). These findings led us to hypothesize that loading WM with visual maintenance would reduce visual capacity involved in perception, thus resulting in reduced distractor processing-similar to perceptual load and opposite to WM cognitive control load. Distractor processing was assessed in a response competition task, presented during the memory interval (or during encoding; Experiment 1a) of a WM task. Loading visual maintenance or encoding by increased set size for a memory sample of shapes, colors, and locations led to reduced distractor response competition effects. In contrast, loading WM cognitive control with verbal rehearsal of a random letter set led to increased distractor effects. These findings confirm load theory predictions and provide a novel functional distinction between the roles of WM maintenance and cognitive control in selective attention.
Prioritizing Targets and Minimizing Distraction Within Limited Capacity Working Memory
Journal of Cognition, 2019
Oberauer (2019) maps out different perspectives that have emerged in exploring working memory and attention, and suggests particular ways in which these key aspects of cognition might operate in the service of successful goal completion. One question that is central to Oberauer's review and to the field more generally concerns how automatic and controlled attention interact with each other and with working memory. In line with this, recent research indicates that both forms of attention can operate within the same task to determine whether information is maintained in working memory. Perceptual attention can be automatically captured by environmental input, resulting in superior recall for the most recent stimulus, along with unwanted disruption by distracting stimuli. Effortful top-down control, powered by executive resources, operates within this context to create and maintain task goals, and to support the maintenance of target information in an accessible state, particularly if it is of greater value/goal relevance. The relationship between working memory and attention has been the focus of a wealth of research over recent years, in efforts to understand how these core components of cognitive function might operate and whether they might be conceptualized as part of the same broad system responsible for driving perception, thought, and action. Oberauer (2019) sets out a timely review of relevant literature and a new taxonomy, with a view to better describing and understanding this relationship. The starting point lies at a possible distinction between two broad approaches, namely, attention as a limited resource and as selective information processing. This is indeed a useful distinction to draw in helping characterize different perspectives within the literature, though each of these viewpoints are clearly likely to have value. Attention is a limited resource, placing constraints on how many 'non-perceptual' items can be maintained, and thus contributing to the limited capacity typically seen as a hallmark of working memory. This limited capacity then underlines the importance of appropriate 'perceptual' selection to meet task goals and avoid non-perceptual, mnemonic representations being overloaded and displaced. Indeed, bottlenecks at encoding and consolidation are a useful constraining factor in controlling undesired representational turnover. In this way, limits on both control and selection might work reciprocally. The end result is an efficient system that makes the most of its' constraints, optimizing performance by retaining recent and salient information (automatically derived from the environment) and/or information aligned to current goals (selected through controlled processing). It remains to be seen whether limits operate on the control of processes, as suggested by Oberauer, or on the processes themselves, though empirically distinguishing between these possibilities may prove challenging. Evidence from dual-task methodology indicates that a domain-general, executive-related form of attention contributes to
Acta Psychologica, 2017
Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load.
Frontiers in Human Neuroscience, 2011
But what happens when working memory is filled with items that are irrelevant for the goals required by a secondary task? In the example above, working memory was loaded with a seven-digit phone number and diminished the driver's capacity to attend to roadsigns. Performance in this dual task scenario requires the coordination of multiple cognitive processes, including working memory, selective attention, and conflict resolution.
Cognition and Emotion, 2009
Whereas attentional interference of negative information has previously been assumed to be automatic, the present research hypothesized that this effect depends on the availability of working memory resources. In two experiments, participants judged the gender of angry versus happy faces. Working memory load was manipulated by the presence or absence of a math task (Study 1) or mental rehearsal of a one-versus eightdigit number (Study 2). The results showed that angry faces interfered more with gender naming than happy faces, but only when working memory load was low. As such, attentional interference of negative stimulus features can be modulated by top-down attentional control processes.