Path dependent equations driven by Hölder processes (original) (raw)

Abstract

This paper investigates existence results for path-dependent differential equations driven by a Hölder function where the integrals are understood in the Young sense. The two main results are proved via an application of Schauder theorem and the vector field is allowed to be unbounded. The Hölder function is typically the trajectory of a stochastic process.

Sorry, this document isn't available for viewing at this time.

In the meantime, you can download the document by clicking the 'Download' button above.

References (19)

  1. F. F. Bonsall and K.B. Vedak, Lectures on some fixed point theorems of functional analysis, no. 26, Tata Institute of Fundamental Research Bombay, 1962.
  2. A. Chojnowska-Michalik, Representation theorem for general stochastic delay equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 7, 635-642.
  3. A. Cosso and F. Russo, Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations, Preprint arXiv:1505.02926, 2015.
  4. M. C. Delfour and S. K. Mitter, Controllability, observability and op- timal feedback control of affine hereditary differential systems, SIAM J. Control 10 (1972), 298-328. MR 0309587
  5. C. Di Girolami and F. Russo, Infinite dimensional stochastic calculus via regularization and applications, Preprint HAL-INRIA, inria-00473947
  6. Clark-Ocone type formula for non-semimartingales with finite quadratic variation, C. R. Math. Acad. Sci. Paris 349 (2011), no. 3-4, 209-214.
  7. B. Dupire, Functional itô calculus, Bloomberg Portfolio Research Paper (2009), no. 2009-04.
  8. F. Flandoli and G. Zanco, An infinite-dimensional approach to path- dependent Kolmogorov's equations, To appear in Ann. Probab., 2013.
  9. P. K. Friz and M. Hairer, A course on rough paths, Springer, 2014.
  10. P. K. Friz and N. B. Victoir, Multidimensional stochastic processes as rough paths: theory and applications, Cambridge University Press Cam- bridge, 2010.
  11. M. Gubinelli, Controlling rough paths, Journal of Functional Analysis 216 (2004), no. 1, 86-140.
  12. M. Gubinelli, A. Lejay, and S. Tindel, Young integrals and spdes, Po- tential Analysis 25 (2006), no. 4, 307-326.
  13. D. Leão, A. Ohashi, and A. B. Simas, Weak functional Itô calculus and applications, Preprint arXiv:1408.1423v2, 2014.
  14. A. Lejay, Controlled differential equations as Young integrals: a sim- ple approach, Journal of Differential Equations 249 (2010), 1777-1798 (Anglais).
  15. T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young, Math. Res. Lett. 1 (1994), no. 4, 451- 464. MR 1302388
  16. B. Maslowski and D. Nualart, Evolution equations driven by a frac- tional Brownian motion, J. Funct. Anal. 202 (2003), no. 1, 277-305. MR 1994773
  17. S. E. A. Mohammed, Stochastic functional differential equations, Re- search Notes in Mathematics, vol. 99, Pitman (Advanced Publishing Program), Boston, MA, 1984.
  18. L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge Uni- versity Press, Cambridge, 2000, Itô calculus, Reprint of the second (1994) edition.
  19. L. C. Young, An inequality of the Hölder type, connected with stieltjes integration, Acta Mathematica 67 (1936), no. 1, 251-282.