Modeling dilution effects in perceptual load search tasks (original) (raw)

Attentional Sets Influence Perceptual Load Effects, but not Dilution Effects

Quarterly Journal of Experimental Psychology, 2014

Perceptual load theory [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.; Lavie, N., & Tsal, Y. (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183–197.] proposes that interference from distractors can only be avoided in situations of high perceptual load. This theory has been supported by blocked design manipulations separating low load (when the target appears alone) and high load (when the target is embedded among neutral letters). Tsal and Benoni [(2010a). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645–1656.; Benoni, H., & Tsal, Y. (2010). Where have we gone wrong? Perceptual load does not affect selective attention. Vision Research, 50, 1292–1298.] have recently shown that t...

Cognitive modeling of dilution effects in visual search

A biologically plausible neural network model of selective attention has been implemented to account for discrepant findings on the source of distractor interference in visual search tasks. The model successfully simulated the findings from an experiment by Benoni and Tsal (2010) documenting the effects of dilution on distractor interference. In conjunction with previous implementations of the model, we have been able to offer a unifying account that settles the controversy between the Perceptual Load and the Dilution theories of selective attention.

A new perspective on the perceptual selectivity of attention under load

Annals of the New York Academy of Sciences, 2014

The human attention system helps us cope with a complex environment by supporting the selective processing of information relevant to our current goals. Understanding the perceptual, cognitive, and neural mechanisms that mediate selective attention is a core issue in cognitive neuroscience. One prominent model of selective attention, known as load theory, offers an account of how task demands determine when information is selected and an account of the efficiency of the selection process. However, load theory has several critical weaknesses that suggest that it is time for a new perspective. Here we review the strengths and weaknesses of load theory and offer an alternative biologically plausible computational account that is based on the neural theory of visual attention. We argue that this new perspective provides a detailed computational account of how bottom-up and top-down information is integrated to provide efficient attentional selection and allocation of perceptual processing resources.

Steady-state Signatures of Visual Perceptual Load, Multimodal Distractor Filtering, and Neural Competition

Journal of Cognitive Neuroscience, 2011

■ The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus. ■

A Critical Discussion of Selective Attention and Perceptual Load Theory

Postgraduate literature review on Attention , 2020

The attentional system can be described as the ‘filter’ that allows us to select relevant sensory information to be processed, whilst filtering out the non- task-relevant information (Gobet et al., 2011). However, this definition of selective attention does not account for the task-irrelevant information that is bought into our conscious awareness (Cherry, 1953). To account for this deficit, perceptual load theory was created to shift the debate from the locus of the selective filter to the complexity of sensory information, known as load (Lavie, 1995). This discussion will critique the early models of selective attention (Broadbent, 1966; (Deutsch & Deutsch, 1963) and how they compare to Lavie’s (2004) perceptual load theory.

Degraded stimulus visibility and the effects of perceptual load on distractor interference

In this study we examined whether effects of perceptual load on the attentional selectivity are modulated by degradation of the visual input. According to the perceptual load theory, increasing task difficulty via degradation of stimulus visibility should not alter the typical effect of perceptual load. In previous studies only the target was degraded, resulting in increased distractor saliency. Here we combined manipulation of perceptual load with a more systematic degradation of visual information. Experiment 1 included five conditions. Three conditions involved low perceptual load + contrast reduction of: (A) only the target; (B) only the distractor; (C) both target and distractor. The other two conditions included non-degraded stimuli with low or high perceptual load. In Experiment 2 visibility degradation was established via manipulation of exposure duration. It included two exposure durations-100 and 150 ms-for each load level (low vs. high). The results of both experiments demonstrated reliable distractor interference of a similar magnitude with both degraded and non-degraded stimuli. This finding suggests that task difficulty, when manipulated via degradation of stimulus visibility, does not play a critical role in determining the efficiency of the attentional selectivity. However, contrary to the predictions of the perceptual load theory, in both experiments distractor interference emerged under the high load condition. In Experiment 2 the high-load interference was of the same magnitude as that of the low load condition. This high-load interference is not due to the presence of a mask (Experiment 3) or a mixed design (Experiment 4). These findings suggest that perceptual load may also play a lesser role in attentional selectivity than that assigned to it by the perceptual load theory.

Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories

Frontiers in Psychology, 2013

Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

Perceptual load as a necessary condition for selective attention.

1995

The early and late selection debate may be resolved if perceptual load of relevant information determines the selective processing of irrelevant information. This hypothesis was tested in 3 studies; all used a variation of the response competition paradigm to measure irrelevant processing when load in the relevant processing was varied. Perceptual load was manipulated by relevant display set size or by different processing requirements for identical displays. These included the requirement to process conjunctions versus isolated features and the requirement to perform simple detection of a character's presence versus difficult identification of its size and position. Distractors' interference was found only under low-load conditions. Because the distractor was usually clearly distinct from the target, it is concluded that physical separation is not a sufficient condition for selective perception; overloading perception is also required. This allows a compromise between early and late selection views and resolves apparent discrepancies in previous work.

Selective visual attention ensures constancy of sensory representations: testing the influence of perceptual load and spatial competition

2006

We report findings from several variants of a psychophysical experiment using an acceleration detection task in which we tested predictions derived from recent neurophysiological data obtained from monkey area MT. The task was designed as a Posner paradigm and required subjects to detect the speed-up of a moving bar, cued with 75% validity. Displays varied according to number of simultaneously presented objects, spatial distance, and difficulty of the task. All data obtained under different levels of competition with multiple objects were compared to a corresponding condition, in which only a single moving bar was presented in the absence of any interfering distracter object. For attended objects, subjects did not show any difference in their ability to detect accelerations, regardless of the strength of inter-object competition or spatial distance. This finding was consistent in all of the experiments, and was even obtained when the acceleration was made hardly detectable. In contrast, increasing competitive interactions either by enhancing number of objects or spatial proximity resulted in strong reduction of performance for non-attended objects. The findings support current noise reduction models and suggest that attention adjusts neuronal processing to ensure a constant sensory representation of the attended object as if this object was the only one in the scene.