Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects (original) (raw)

Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure

PLoS ONE, 2014

Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper ParanĂ¡ River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that ''all-or-nothing'' interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.

Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms

Ecology Letters, 2012

Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases inherent to meta-analyses. In the category of passive dispersers, large-bodied groups showed stronger spatial patterning than small-bodied groups suggesting an increasing impact of dispersal limitation with increasing body size. Metacommunities of organisms with the ability to fly (i.e. insect groups) showed a weaker imprint of dispersal limitation than passive dispersers with similar body size. In contrast, dispersal movements of vertebrate groups (fish and amphibians) seemed to be mainly confined to local connectivity patterns. Our results reveal that body size and dispersal mode are important drivers of metacommunity structure and these traits should therefore be considered when developing a predictive framework for metacommunity dynamics.

A comparative analysis of metacommunity types in the freshwater realm

Ecology and Evolution, 2015

Most metacommunity studies have taken a direct mechanistic approach, aiming to model the effects of local and regional processes on local communities within a metacommunity. An alternative approach is to focus on emergent patterns at the metacommunity level through applying the elements of metacommunity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has very rarely been applied in the context of a comparative analysis of metacommunity types of main microbial, plant, and animal groups. Furthermore, to our knowledge, no study has associated metacommunity types with their potential ecological correlates in the freshwater realm. We assembled data for 45 freshwater metacommunities, incorporating biologically highly disparate organismal groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first examined ecological correlates (e.g., matrix properties, beta diversity, and average characteristics of a metacommunity, including body size, trophic group, ecosystem type, life form, and dispersal mode) of the three elements of metacommunity structure (i.e., coherence, turnover, and boundary clumping). Second, based on those three elements, we determined which metacommunity types prevailed in freshwater systems and which ecological correlates best discriminated among the observed metacommunity types. We found that the three elements of metacommunity structure were not strongly related to the ecological correlates, except that turnover was positively related to beta diversity. We observed six metacommunity types. The most common were Clementsian and quasi-nested metacommunity types, whereas Random, quasi-Clementsian, Gleasonian, and quasi-Gleasonian types were less common. These six metacommunity types were best discriminated by beta diversity and the first axis of metacommunity ecological traits, ranging from metacommunities of producer organisms occurring in streams to those of large predatory organisms occurring in lakes. Our results showed that focusing on the emergent properties of multiple metacommunities provides information additional to that obtained in studies examining variation in local community structure within a metacommunity.

The importance of metacommunity ecology for environmental assessment research in the freshwater realm

Most bioassessment programs rest on the assumption that species have different niches, and that abiotic environmental conditions and changes therein determine community structure. This assumption is thus equivalent to the species sorting perspective (i.e. that species differ in their responses to environmental variation) in metacommunity ecology. The degree to which basing bioassessment on the species sorting perspective is reasonable is likely to be related to the spatial extent of a study and the characteristics of the organism groups (e.g. dispersal ability) with which the effects of anthropogenic changes are assessed. Recent findings in metacommunity research have stressed that community structure is determined not only by local abiotic environmental conditions but also by biotic interactions and dispersal-related effects. For example, dispersal limitation may prevent community structure recovery from the effects of a putative stressor, as organisms may not be able to disperse to all sites in a region. Mass effects (i.e. the presence of species in environmentally suboptimal sites due to high dispersal rates from environmentally suitable sites) may, in turn, obscure the effects of a stressor, as dispersal from source sites (e.g. an unaltered site) allows persistence at sink sites (e.g. an anthropogenically altered site). Better bioassessment should thus take both niche-and dispersal-related processes simultaneously into consideration, which can be accomplished by explicitly modelling spatial location as a proxy for dispersal effects. Such an integrated approach should be included in bioassessment programs using general multivariate approaches, predictive modelling, and multimetric indices.

Dispersal mode and spatial extent influence distance-decay patterns in pond metacommunities

PloS one, 2018

Assuming that dispersal modes or abilities can explain the different responses of organisms to geographic or environmental distances, the distance-decay relationship is a useful tool to evaluate the relative role of local environmental structuring versus regional control in community composition. Based on continuing the current theoretical framework on metacommunity dynamics and based on the predictive effect of distance on community similarity, we proposed a new framework that includes the effect of spatial extent. In addition, we tested the validity of our proposal by studying the community similarity among three biotic groups with different dispersal modes (macrofaunal active and passive dispersers and plants) from two pond networks, where one network had a small spatial extent, and the other network had an extent that was 4 times larger. Both pond networks have similar environmental variability. Overall, we found that environmental distance had larger effects than geographical d...

Metacommunity size influences aquatic community composition in a natural mesocosm landscape

Oikos, 2014

Ecosystems are often arranged in naturally patchy landscapes with habitat patches linked by dispersal of species in a metacommunity. Th e size of a metacommunity, or number of patches, is predicted to infl uence community dynamics and therefore the structure and function of local communities. However, such predictions have yet to be experimentally tested using full food webs in natural metacommunities. We used the natural mesocosm system of aquatic macroinvertebrates in bromeliad phytotelmata to test the eff ect of the number of patches in a metacommunity on species richness, abundance, and community composition. We created metacommunities of varying size using fi ne mesh cages to enclose a gradient from a single bromeliad up to the full forest. We found that species richness, abundance, and biomass increased from enclosed metacommunities to the full forest size and that diversity and evenness also increased in larger enclosures. Community composition was aff ected by metacommunity size across the full gradient, with a more even detritivore community in larger metacommunities, and taxonomic groups such as mosquitoes going locally extinct in smaller metacommunities. We were able to divide the eff ects of metacommunity size into aquatic and terrestrial habitat components and found that the importance of each varied by species; those with simple life cycles were only aff ected by local aquatic habitat whereas insects with complex life cycles were also aff ected by the amount of terrestrial matrix. Th is diff erential survival of obligate and non-obligate dispersers allowed us to partition the beta-diversity between metacommunities among functional groups. Our study is one of the fi rst tests of metacommunity size in a natural metacommunity landscape and shows that both diversity and community composition are signifi cantly aff ected by metacommunity size.

Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms

Oecologia, 2016

We examined variation in the composition of six freshwater organismal groups across various drainage basins in Finland. We first modelled spatial structures within each drainage basin using Moran eigenvector maps. Second, we partitioned variation in community structure among three groups of predictors using constrained ordination: (1) local environmental variables, (2) spatial variables, and (3) dummy variable drainage basin identity. Third, we examined turnover and nestedness components of multiple-site beta diversity, and tested the best fit patterns of our datasets using the "elements of metacommunity structure" analysis. Our results showed that basin identity and local environmental variables were significant predictors of community structure, whereas withinbasin spatial effects were typically negligible. In half of the organismal groups (diatoms, bryophytes, zooplankton), basin identity was a slightly better predictor of community structure than local environmental variables, whereas the opposite was true for the remaining three organismal groups (insects, macrophytes, fish). Both pure basin and local environmental fractions were, however, significant after accounting for the effects of the other predictor variable sets. All organismal groups exhibited high levels of beta diversity, which was mostly attributable to the turnover component. Our results showed consistent Clementsian type metacommunity structures, suggesting that subgroups of species responded similarly to environmental factors or drainage basin limits. We conclude that aquatic communities across large scales are mostly determined by environmental and basin effects, which leads to high beta diversity and prevalence of Clementsian community types.

Towards understanding the organisation of metacommunities in highly dynamic ecological systems

Community ecology recognises today that local biological communities are not only affected by local biotic interactions and abiotic environmental conditions, but also by regional processes (e.g. dispersal). While much is known about how metacommunities are organised in space in terrestrial, marine and freshwater ecological systems, their temporal variations remain poorly studied. Here, we address the question of the dynamics of metacommunities in highly variable systems, using intermittent rivers (IRs), those rivers which temporarily stop flowing or dry up, as a model system. We first review how habitat heterogeneity in space and time influences metacommunity organisation. Second, we compare the metacommunities in IRs to those in perennial rivers (PRs) and develop the idea that IRs could undergo highly dynamic shifts due to the temporal variability in local and regional community processes. Third, we develop the idea that in IRs, metacommunities of the wet and dry phases of IRs are closely intertwined, thereby increasing even more their respective temporal dynamics. Last, we provide a roadmap to stimulate further conceptual and empirical developments of metacommunity research and identify possible applications for improving the management of IRs and other highly dynamic ecological systems.

Effects of the Temporal Scale of Observation on the Analysis of Aquatic Invertebrate Metacommunities

Frontiers in Ecology and Evolution, 2020

The development of metacommunity theory has boosted the implementation of numerous empirical tests with field data, mostly focused on the role of spatial and environmental gradients on metacommunity organization. These studies showed an important dependence of the results on the observational scale considered, i.e., spatial grain, sampling spacing, and extent. However, few works deal with time per se as a component explaining metacommunity structure, even when data from periodic sampling are available. We suggest adding time explicitly to metacommunity analysis, but taking into account that the temporal scale of observation could affect the estimation of the relative influence of environment, space, and time, as previously recorded for spatial scale variation. Here, we analyze temporal scale dependence using simulated and empirical metacommunities of aquatic invertebrates. The effects of the study duration (i.e., temporal extent) were stronger when most metacommunity variation occurred along the temporal axis, so that local communities were spatially homogenized under high dispersal rates. Contrarily, dispersal limitation and niche differentiation (depending on the spatio-temporal structure of the environment) kept constant the spatial heterogeneity of the metacommunity, reducing the temporal variation and the importance of the temporal scale of observation. Our results highlight the importance of the temporal scale chosen for the analysis of metacommunity dynamics and emphasizes the temporal perspective of metacommunities, suggesting novel and interesting avenues in this research program.