Immune and Nervous Systems Interaction in Endocrine Disruptors Toxicity: The Case of Atrazine (original) (raw)

Lack of immunotoxic effects of repeated exposure to atrazine associated with the adaptation of adrenal gland activation

Regulatory Toxicology and Pharmacology, 2017

T cell-dependent IgM antibody production and natural killer cell (NKC) activity were assessed in SD rats orally administered atrazine for 28 days to males (0, 6.5, 25, or 100 mg/kg/day) or females (0, 3, 6, or 50 mg/kg/day), or 30 or 500 ppm in diet (3 or 51 mg/kg/day). Anti-asialo GM1 antibodies (NKC) and cyclophosphamide (antibody-forming cell [AFC]) assays served as positive controls. Pituitary (ACTH, prolactin), adrenal (corticosterone, progesterone, aldosterone), and gonadal (androgens, estrogens) hormones were assessed after 1, 7, and/or 28 days of treatment. Food intake and body weights were significantly reduced in the highest dosed males, and transiently affected in females. Urinary corticosterone levels were not increased in atrazine-treated groups in either sex at any time point measured (10, 22, or 24 days). Corticosterone and progesterone were elevated in males after a single atrazine dose ≥ 6.5 mg/kg/day, but not after 7, 14, or 28 doses. There were no effects on adrenal, pituitary, or gonadal hormones in females. Atrazine did not suppress the AFC response or decrease NKC function after 28 days in males or females. Atrazine had no effect on spleen weights or spleen cell numbers in males or females, although thymus weights were elevated in males receiving the highest dose. The lack of immunotoxic effect of atrazine was associated with diminished adrenal activation over time in males, and no effects on adrenal hormones in females.

Effects of the Endocrine Disruptors Atrazine and PCB 153 on the Protein Expression of MCF7 Human Cells

Journal of Proteome Research, 2009

Polychlorinated biphenyls (PCBs) and a number of pesticides can act as endocrine disrupting compounds (EDCs). These molecules exhibit hormonal activity in vivo, and can therefore interact and perturb normal physiological functions. Many of these compounds are persistent in the environment, and their bioaccumulation may constitute a significant threat for human health. Physiological abnormalities following exposure to these xenobiotic compounds go along with alterations at the protein level of individual cells. In this study, MCF-7 cells were exposed to environmentally relevant concentrations of atrazine, PCB153 (100 ppb, respectively), 17-estradiol (positive control, 10 nM) and a negative control (solvent) for t ) 24 h (n ) 3 replicates/exposure group). After trizol extraction and protein solubilization, protein expression levels were studied by 2D-DIGE. Proteins differentially expressed were excised, trypsin-digested, and identified by MALDI-ToF-ToF, followed by NCBInr database search. 2D-DIGE experiments demonstrated that 49 spots corresponding to 29 proteins were significantly differentially expressed in MCF-7 cells (>1.5-fold, P < 0.05, Student's paired t test). These proteins belonged to various cellular compartments (nucleus, cytosol, membrane), and varied in function; 88% of proteins were down-regulated during atrazine exposure, whereas 75% of proteins were up-regulated by PCB153. Affected proteins included those regulating oxidative stress such as superoxide dismutase and structural proteins such as actin or tropomyosin, which may explain morphological changes of cells already observed under the microscope. This study highlights the susceptibility of human cells to compounds with endocrine disrupting properties. Figure 4. Up-and down-regulation of identified proteins. Chart displaying differentially expressed proteins following atrazine and PCB treatment. Among 18 differentially expressed proteins during the atrazine treatment, 88% were underexpressed, and among 12 differentially expressed proteins during the PCB treatment, 75% were overexpressed. Gray and dark indicate overexpression and underexpression of proteins, respectively. (a) atrazine; (e) estradiol; (d) DMSO; (p) PCB153.

Immunotoxic Effects of Short-term Atrazine Exposure in Young Male C57BL/6 Mice

Toxicological Sciences, 2005

The herbicide atrazine (ATR) is a very widely used pesticide; yet the immunotoxicological potential of ATR has not been studied extensively. Our objective was to examine the effect of ATR on selected immune parameters in juvenile mice. ATR (up to 250 mg/kg) was administered by oral gavage for 14 days to one-month-old male C57BL/6 mice. One day, one week, and seven weeks after the last ATR dose, mice were sacrificed, and blood, spleens, and thymuses were collected and processed for cell counting and flow cytometry. Thymus and spleen weights were decreased by ATR, with the thymus being more sensitive than the spleen; this effect was still present at seven days, but not at seven weeks after the last ATR dose. Similarly, organ cellularity was persistently decreased in the thymus and in the spleen, with the splenic, but not thymic cellularity still being depressed at seven weeks post ATR. Peripheral blood leukocyte counts were not affected by ATR. There were also alterations in the cell phenotypes in that ATR exposure decreased all phenotypes in the thymus, with the number of CD4 + /CD8 + being affected the least. At the higher doses, the decreases in the thymic Tcell populations were still present one week after the last ATR dose. In the spleen, the CD8 + were increased and MHC-II + and CD19 + cells were decreased one day after the last ATR dose. Also, ATR treatment decreased the number of splenic naïve T helper and T cytotoxic cells, whereas it increased the percentage of highly activated cytotoxic/memory T cells. Interestingly, the proportion of mature splenic dendritic cells (DC; CD11c high ), was also decreased and it persisted for at least one week, suggesting that ATR inhibited DC maturation. In the circulation, ATR exposure decreased CD4 + lymphocytes at one day, whereas at seven days after the last ATR dose, in addition to the decrease in CD4 + lymphocytes, the MHC-II + cells were also decreased at the 250 mg/kg dose. Thus, ATR exposure appears to be detrimental to the immune system of juvenile mice by decreasing cellularity and affecting lymphocyte distribution, with certain effects persisting long after exposure has been terminated.

Endocrine-Disrupting Chemicals Use Distinct Mechanisms of Action to Modulate Endocrine System Function

Endocrinology, 2006

The term endocrine-disrupting chemicals is used to define a structurally diverse class of synthetic and natural compounds that possess the ability to alter various components of the endocrine system and potentially induce adverse health effects in exposed individuals and populations. Research on these compounds has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mech-anisms to modulate different components of the endocrine system. This review will describe in vitro and in vivo studies that highlight the spectrum of unique mechanisms of action and biological effects of four endocrine-disrupting chemicalsdiethylstilbestrol, genistein, di(n-butyl)phthalate, and methoxyacetic acid-to illustrate the diverse and complex nature of this class of compounds. (Endocrinology 147: S25-S32, 2006)

Neuroendocrine targets of endocrine disruptors

2010

The central neuroendocrine systems are responsible for the control of homeostatic processes in the body, including reproduction, growth, metabolism and energy balance, and stress responsiveness. These processes are initiated by signals in the central nervous system, specifically the hypothalamus, and are conveyed first by neural and then by endocrine effectors. The neuroendocrine systems, as the links between the brain and peripheral endocrine systems, play critical roles in the ability of an organism to respond to its environment under normal circumstances. When neuroendocrine homeostasis is disrupted by environmental endocrine-disrupting chemicals, a variety of perturbations can ensue, particularly when endocrine disruption occurs during critical developmental time periods. This article will discuss the evidence for environmental endocrine disruption of neuroendocrine systems, and the sequelae on endocrine and reproductive functions.

Effects of Endocrine Disruptor Compounds, Alone or in Combination, on Human Macrophage-Like THP-1 Cell Response

PLOS ONE, 2015

The aim of the present study was to evaluate the immunological effects on human macrophages of four endocrine disruptor compounds (EDCs) using the differentiated human THP-1 cell line as a model. We studied first the effects of these EDCs, including Bisphenol A (BPA), di-ethylhexyl-phthalate (DEHP), dibutyl phthalate (DBP) and 4-tert-octylphenol (4-OP), either alone or in combination, on cytokine secretion, and phagocytosis. We then determined whether or not these effects were mediated by estrogen receptors via MAPK pathways. It was found that all four EDCs studied reduced strongly the phagocytosis of the differentiated THP-1 cells and that several of these EDCs disturbed also TNF-α, IL-1 β and IL-8 cytokine secretions. Furthermore, relative to control treatment, decreased ERK 1/2 phosphorylation was always associated with EDCs treatments-either alone or in certain combinations (at 0.1 μM for each condition). Lastly, as treatments by an estrogen receptor antagonist suppressed the negative effects on ERK 1/2 phosphorylation observed in cells treated either alone with BPA, DEHP, 4-OP or with the combined treatment of BPA and DEHP, we suggested that estrogen receptor-dependent pathway is involved in mediating the effects of EDCs on human immune system. Altogether, these results advocate that EDCs can disturb human immune response at very low concentrations.

Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

Reproductive toxicology (Elmsford, N.Y.), 2014

Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and testis (intact) proteomes in rats after 3 days of exposure. The adrenal accounted for most of the serum progesterone and all of the corticosterone increases in intact and castrated males. Serum luteinizing hormone, androstenedione, and testosterone in intact males shared a non-monotonic response suggesting transition from an acute stimulatory to a latent inhibitory response to exposure. Eight adrenal proteins were significantly altered with dose. There were unique proteomic changes between the adrenals of intact and castrated males. Six testis proteins in intact males had non-monotonic responses that significantly correlated with serum testosterone. Different dose-response curves for steroids and proteins in the adrenal and testis reveal novel adverse outcome pathways in intact and castrated male rats.

Endocrine Disrupting Chemical Atrazine Causes Degranulation through Gq/11 Protein-Coupled Neurosteroid Receptor in Mast Cells

Toxicological Sciences, 2005

We studied the effects of representative endocrine-disrupting chemicals on b-hexosaminidase release from mast cells and their putative neurosteroid receptor involvement. Some endocrinedisrupting chemicals, such as amitrol, benzophenon, bisphenol A, pentachlorophenol, and tetrabromophenol A did not cause hexosaminidase release from RBL-2H3 cells, but they blocked the release by dehydroepiandrosterone sulfate, a representative neurosteroid agonist. On the contrary, atrazine, which is a widely used herbicide, caused a rapid and concentration-dependent degranulation in the range between 10 nM and 1 mM in RBL-2H3 and peritoneal mast cells. Atrazine-induced degranulation was also evaluated by Alexa 488-annexin V binding to the phosphatidylserine, which is externalized during degranulation, and these actions were blocked by BSA-conjugated (membrane-impermeable) progesterone (PROG-BSA). The atrazine-induced b-hexosaminidase release was characterized by various inhibitors including antisenseoligodeoxynucleotide for Ga q/11 , pertussis toxin, phospholipase C inhibitor U-73122, inositol 1,4,5-triphosphate receptor inhibitor xestospongin C and Ca 2+ channel blocker lanthanum chloride. These analyses revealed that the degranulation is mediated by putative metabotropic neurosteroid receptor, G q/11 , phospholipase C and Ca 2+ mobilization from intracellular stores. Having documented progesterone receptor-modulation of atrazine-induced mast cell degranulation in vitro, this response was evaluated in mice. Atrazine caused pain responses when injected in the foot pads of mice, and they were antagonized by local administration of PROG-BSA or diphenhydramine. Atrazine also caused PROG-BSA-reversible plasma extravasation. All these findings strongly suggest that herbicide atrazine exerts inflammatory activity through activation of putative G q/11-coupled neurosteroid receptor and phospholipase C.

Mechanistic Overview of Immune Modulatory Effects of Environmental Toxicants

Inflammation & Allergy-Drug Targets, 2015

The immune system is an integrated organization, comprising of specific organs, cells and molecules playing a crucial role in the maintenance of health. The purpose of this paper is to give a mechanistic overview of toxic effects of various chemicals and pharmacological agents, and their interaction with the various components of the immune system that leads to modulation of the immune responses. Studies suggest that many chemical agents present in the environment like; heavy metals, agrochemicals, and various types of hydrocarbons possess immune toxicity and cause either structural, functional or compositional changes in various components of the immune system that alters immune response. There is present a complex bidirectional relationship between central nervous system (CNS) and the immune system. And receptors for neuropeptides, neurotransmitters, and hormones are located on lymphoid organs. Therefore, we are of the opinion that Endocrine Disrupting Chemicals (EDCs) present in our environment may be indirectly involved in causing immune toxicity via neuroendocrine channels, and vice versa many neurological disorders may be associated with environmental pollutants utilizing immuno-neuroendocrine pathways.

Atrazine Disrupts the Hypothalamic Control of Pituitary-Ovarian Function

Toxicological Sciences, 2000

The chloro-S-triazine herbicides (i.e., atrazine, simazine, cyanazine) constitute the largest group of herbicides sold in the United States. Despite their extensive usage, relatively little is known about the possible human-health effects and mechanism(s) of action of these compounds. Previous studies in our laboratory have shown that the chlorotriazines disrupt the hormonal control of ovarian cycles. Results from these studies led us to hypothesize that these herbicides disrupt endocrine function primarily through their action on the central nervous system. To evaluate this hypothesis, we examined the estrogen-induced surges of luteinizing hormone (LH) and prolactin in ovariectomized Sprague-Dawley (SD) and Long-Evans hooded (LE) rats treated with atrazine (50-300 mg/kg/day, by gavage) for 1, 3, or 21 days. One dose of atrazine (300 mg/kg) suppressed the LH and prolactin surge in ovariectomized LE, but not SD female rats. Atrazine (300 mg/kg) administered to intact LE females on the day of vaginal proestrus was without effect on ovulation but did induce a pseudopregnancy in 7 of 9 females. Three daily doses of atrazine suppressed the estrogen-induced LH and prolactin surges in ovariectomized LE females in a dose-dependent manner, but this same treatment was without effect on serum LH and prolactin in SD females. The estrogen-induced surges of both pituitary hormones were suppressed by atrazine (75-300 mg/kg/day) in a dose-dependent manner in females of both strains evaluated after 21 days of treatment. Three experiments were then performed to determine whether the brain, pituitary, or both organs were the target sites for the chlorotriazines. These included examination of the ability of (1) the pituitary lactotrophs to secrete prolactin, using hypophyosectomized females bearing pituitary autotransplants (ectopic pituitaries); (2) the synthetic gonadotropin-releasing hormone (GnRH) to induce LH secretion in females treated with high concentrations of atrazine for 3 days; and (3) atrazine (administered in vivo or in vitro) to suppress LH and prolactin secretion from pituitaries, using a flow-through perifusion procedure. In conclusion, the results of these studies demonstrate that atrazine alters LH and prolactin serum levels in the LE and SD female rats by altering the hypothalamic control of these hormones. In this regard, the LE female appeared to be more sensitive to the hormone suppressive effects of atrazine, as indicated by the decreases observed on treatment-day 3. These experiments support the hypothesis that the effect of atrazine on LH and prolactin secretion is mediated via a hypothalamic site of action.