Structural Characterization and Antimicrobial Activity of 2-(5-H/methyl-1H-benzimidazol-2-yl)-4-bromo/nitro-phenol Ligands and their Fe(NO3)3 Complexes (original) (raw)

Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

2015

Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a unique property to reduce surface tension of the media from 72 to 28.7 mN/m. In addition, it showed a stable surface activity over a wide range of temperatures, pH, and saline conditions and had strong antimicrobial activity. This potential of the identified biosurfactant can be exploited by pharmaceutical industries for its commercial usage.

Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities

Pakistan journal of pharmaceutical sciences, 2018

Present study was designed to evaluate the biosurfactant production potential by native strains of Bacillus cereus as well as determine their antimicrobial and antioxidant activities. The strains isolated from garden soil were characterized as B. cereus MMIC 1, MMIC 2 and MMIC 3. Biosurfactants were extracted as grey white precipitates. Optimum conditions for biosurfactant production were 37°C, the 7th day of incubation, 0.5% NaCl, pH 7.0. Moreover, corn steep liquor was the best carbon source. Biuret test, Thin Layer Chromatography (TLC), agar double diffusion and Fourier Transform Infrared Spectroscopy (FTIR) characterized the biosurfactants as cationic lipopeptides. Biosurfactants exhibited significant antibacterial and antifungal activity against S. aureus, E. coli, P. aeruginosa, K. pneumoniae, A. niger and C. albicans at 30 mg/ml. Moreover, they also possessed antiviral activity against NDV at 10 mg/ml. Cytotoxicity assay in BHK-21 cell lines revealed 63% cell survival at 10 m...

Microbial derived surface active compounds: properties and screening concept

World Journal of Microbiology and Biotechnology, 2015

Biosurfactants are surface-active biomolecules that are produced by a variety of microorganisms. They have gained biotechnologist interest for high diversity and their efficient action in comparison to synthetic emulsifiers. So, we discussed a wide array of screening method based on direct and indirect surface and interfacial tension measurements. Also, this review describes biosurfactant physicochemical properties and natural role in the environment. Also, it presents their tolerance to extreme conditions of temperature, pH and ionic strength, low toxicity and biodegradability. Functional properties like emulsification, foaming, solubilizing and membrane permeabilizing activities were also discussed along with their related application.

Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity

PLOS ONE, 2018

Bacillus spp. produce a broad spectrum of lipopeptide biosurfactants, among which surfactin, iturin and fengycin are widely studied families. The goals of this study were to characterize the biosurfactant activity of Bacillus spp. and to investigate their motility and biofilm formation capabilities. In addition, we extracted lipopeptides from these bacteria to assess their antifungal activities and analyzed these products by mass spectrometry (MS). B. amyloliquefaciens FZB42, Bacillus sp. NH 217 and B. subtilis NH-100 exhibited excellent biosurfactant and surface spreading activities, whereas B. atrophaeus 176s and Paenibacillus polymyxa C1225 showed moderate activity, and B. subtilis 168 showed no activity. Strains FZB42, NH-100, NH-217, 176s and CC125 exhibited excellent biofilm formation capabilities. Lipopeptide extracts displayed good antifungal activity against various phytopathogens and their associated diseases, such as Fusarium moniliforme (rice bakanae disease), Fusarium oxysporum (root rot), Fusarium solani (root rot) and Trichoderma atroviride (ear rot and root rot). Lipopeptide extracts of these strains also showed hemolytic activity, demonstrating their strong potential to produce surfactants. LCMS-ESI analyses identified the presence of surfactin, iturin and fengycin in the extracts of Bacillus strains. Thus, the strains assayed in this study show potential as biocontrol agents against various Fusarium and Trichoderma species.

Structural characterization and antimicrobial activity of chitosan/betaine derivative complex

Carbohydrate Polymers, 2004

Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20-120 ºC), pH (2-12) and salt concentrations (2-12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30-35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a unique property to reduce surface tension of the media from 72 to 28.7 mN/m. In addition, it showed a stable surface activity over a wide range of temperatures, pH, and saline conditions and had strong antimicrobial activity. This potential of the identified biosurfactant can be exploited by pharmaceutical industries for its commercial usage.

Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries

In the current scenario of changing climatic conditions and rising global population, there is always a need to explore novel, efficient, and economical natural products for the benefit of human kind. Biosurfactant is one of the latest explored microbial biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries as raw material, lubrication, wetting, foaming softening, making emulsions, and stabilizing dispersions. The amphiphilic nature of biosurfactant biomolecules showed great advantage, distributing themselves into two immiscible surfaces by reducing interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and wide range of pH fluctuations making the microbial surfactants preferable compared to their chemical counterparts. Additionally, the biosurfactant...

The Physicochemical and Functional Properties of Biosurfactants: A Review

Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of humans and other living organisms. In the past few years, there has been a growing inclination towards natural derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.

Microbial Biosurfactants as Additives for Food Industries

in Wiley Online Library (wileyonlinelibrary.com) Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed.

Use of Potato Peel as Cheap Carbon Source for the Bacterial Production of Biosurfactants

2014

Production of environmental friendly biopolymers from microbes such as bacteria by using low cost substrate as a nutrient source is the matter of great interest to the biological researchers. In the present study effect of potato peels as a cheap nutrient source was observed on biosurfactant production of bacterial isolates. It was also compared with the additional Sodium Nitrite and Urea as nitrogen sources and discussed the influence of various parameters on the growth of bacterial isolates and yield of biosurfactants. This study revealed that the simple potato peel enhances the growth rate of culture and positively affect the biosurfactant production. Addition of Urea and Sodium nitrite as Nitrogen source showed positive impact on growth of bacterial isolates but no effect was observed on biosurfactant production. Such studies suggest cost effective solution to the production of commercially important biosurfactant.