Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain (original) (raw)

Abstract

A number of biopeptides promoting health benefits have been isolated from food-protein hydrolysates and can be released during enzymatic digestion. Antihypertensive peptides can be part of protein fractions from amaranth grain. The objective of this work was to obtain ACE-inhibitory peptide fractions from albumin 1 and the globulin of amaranth (Amaranthus hypochondriacus) grain. Albumin 1 and globulin were hydrolysed with alcalase; hydrolysis was monitored by proteolytic degradation and by ACE-inhibitory activity. The highest ACE-inhibitory activity was 40% and 35% as obtained after 18 and 15 h hydrolysis for albumin 1 and globulin, respectively. Further separation and purification of the ACE-inhibitory eptide fractions were carried out by gel filtration and C18 RP–HPLC. The IC50 was 0.35 ± 0.02 mg/ml for albumin 1 peptide fraction and 0.15 ± 0.03 mg/ml for globulin peptide fraction. Albumin 1 peptide fraction showed an competitive mode of ACE inhibition, whereas the globulin peptide fraction was competitive. The globulin peptide fraction may have one of the most active naturally-occurring ACE-inhibitory peptides. 

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (30)

  1. Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256-1262.
  2. AOAC (2000). Official methods of analysis. Association of Official Analytical Chemists.
  3. Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  4. Cheung, H. S., Wang, F. L., Ondetti, M. A., Sabo, E. F., & Cushman, D. W. (1980). Binding of peptides substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. Journal of Biological Chemistry, 255(2), 401-407.
  5. Cushman, D. W., Ondetti, M. A., Gordon, E. M., Natarajan, S., Karanewsky, D. S., Krapcho, J., et al. (1987). Rational design and biochemical utility of specific inhibitors of angiotensin-converting enzyme. Journal of Cardiovascular Pharmacology, 10(7), S17-30.
  6. Drzewiecki, J., Delgado-Licon, E., Haruenkit, R., Pawelzik, E., Martín-Belloso, O., Park, Y. S., et al. (2003). Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. Journal of Agricultural and Food Chemistry, 51(26), 7798-7804.
  7. Gorinstein, S., Drzewiecki, J., Delgado-Licon, E., Pawelzik, E., Martínez-Ayala, A. L., Medina, O. J., et al. (2005). Relationship between dicotyledon-amaranth, quinoa, fagopyrum, soybean and monocots-sorghum and rice based on protein analyses and their use as substitution of each other. European Food Research and Technology, 221(1-2), 69-77.
  8. Hayakari, M., Kondo, Y., & Izumi, H. (1978). A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Analytical Biochemistry, 84, 361-369.
  9. Kawakami, A., & Kayahara, H. (1993). Synthesis of Leu-Lys-Tyr derivatives and their interaction with angiotensin converting enzyme. Journal of the Japanese Society of Nutrition and Food Science, 46(5), 425-428.
  10. Konishi, Y., Fumita, Y., Ikeda, K., Okuno, K., & Fuwa, H. (1985). Isolation and characterization of globulin from seeds of Amaranthus hypochondriacus L. Agricultural and Biological Chemistry, 49(5), 1453-1459.
  11. Konishi, Y., Horikawa, K., Oku, Y., Azumaya, J., & Nakatani, N. (1991). Extraction of two albumin fractions from amaranth grains: Comparison of some physicochemical properties and the putative localization in the grains. Agricultural and Biological Chemistry, 55(11), 1745-1750.
  12. Laemmli, U. K. (1970). Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  13. Li, G. H., Le, G. W., Liu, H., & Shi, Y. H. (2005). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme-inhibitory activity. Food Science and Technology International, 11(4), 281-287.
  14. Li, G. H., Le, G. W., Shi, Y. H., & Sherstha, S. (2004). Angiotensin I-converting enzyme- inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24(7), 469-486.
  15. Lo, W. M. Y., & Li-Chan, E. C. Y. (2005). Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein. Journal of Agricultural and Food Chemistry, 53(9), 3369-3376.
  16. Matsufuji, H., Matsui, T., Seki, E., Osajima, K., Nakashima, M., & Osajima, Y. (1994). Angiotensin I-converting enzyme inhibitory peptides in alkaline protease hydrolyzate derived from sardine muscle. Bioscience, Biotechnology, and Biochemistry, 58(12), 2244-2245.
  17. Nakagomi, K., Yamada, R., Ebisu, H., Sadakane, Y., Akizawa, Y., & Tanimura, T. (2000). Isolation of acein-2, a novel angiotensin-I-converting enzyme inhibitory peptide derived from a tryptic hydrolysate in human plasma. FEBS Letters, 467(2-3), 235-238.
  18. Nelson, D. L., & Cox, M. M. (2000). Amino acids, peptides and proteins. In Lenhinger principles of biochemistry (pp. 115-158). New York: Worth Publishers.
  19. Paredes-López, O., Mora-Escobedo, R., & Ordorica-Falomir, C. (1988). Isolation of amaranth proteins. Lebensmittel-Wissenschaft und Technologie, 21, 59-61.
  20. Pedroche, J., Yust, M. M., Girón-Calle, J., Alaiz, M., Millán, F., & Vioque, J. (2002). Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. Journal of the Science of Food and Agriculture, 82(9), 960-965.
  21. Perich, R. B., Jackson, B., Rogerson, F. M., Mendelsohn, F. A. O., & Johnston, C. I. (1992). Two binding sites on angiotensin converting enzyme evidence from radioligand binding studies. Molecular Pharmacology, 42(2), 286-293.
  22. Philanto-Leppälä, A., Koskinen, P., Piilola, K., Tupasela, T., & Korhonen, H. (2000). Angiotensin I-converting enzyme inhibitory properties of whey protein digests: Concentration and characterization of active peptides. Journal of Dairy Research, 67, 53-64.
  23. Romero-Zepeda, H., & Paredes-López, O. (1996). Isolation and characterization of amarantin, the 11S amaranth seed globulin. Journal of Food Biochemistry, 19(5), 329-339.
  24. Segura-Nieto, M., Barba de la Rosa, A. P., & Paredes-López, O. (1994). Biochemistry of amaranth proteins. In O. Paredes-López (Ed.). Amaranth: Biology, Chemistry and Technology (pp. 75-106). Boca Raton, Florida: CRC Press.
  25. Sica, D. A. (2003). Angiotensin-converting enzyme inhibitors. In J. L. Izzo, H. R. Black, T. L. Goodfriend, J. R. Sowers, A. B. Weder, & L. J. Appel, et al. (Eds.), Hypertension primer (pp. 426-429). Baltimore: Lippincott Williams and Wilkins.
  26. Silva-Sánchez, C., Barba de la Rosa, A. P., León-Galván, M. F., de Lumen, B. O., de León-Rodríguez, A., & González de Mejía, E. (2008). Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. Journal of Agricultural and Food Chemistry, 56(4), 1233-1240.
  27. Skeggs, L. T., Marsh, W. H., Kahn, J. R., & Shumway, N. P. (1954). The existence of two forms of hypertension. The Journal of Experimental Medicine, 99(3), 275-282.
  28. Soriano-Santos, J., Iwabuchi, S., & Fujimoto, K. (1992). Solubility of amaranth seed protein in sodium sulphate and sodium chloride: The main factor in quantitative extraction for analysis. International Journal of Food Science and Technology, 27(3), 337-346.
  29. Surovtsev, V. I., Fjodorov, T. V., Baydus, A. N., Borozdina, M. A., Gusev, V. V., & Chuprunov, V. P. (2001). Use of trinitrophenylation for quantification of protease and peptidase activities. Biochemistry (Moscow), 66(5), 531-534.
  30. Wu, J., & Ding, X. (2002). Characterization of inhibition and stability of soy-protein- derived angiotensin I-converting enzyme inhibitory peptides. Food Research International, 35(4), 367-375.