Liposomal immunisation against snake venoms (original) (raw)

Antibodies as Snakebite Antivenoms: Past and Future

Toxins

Snakebite envenomation is considered a neglected tropical disease, affecting tens of thousands of people each year. The recommended treatment is the use of antivenom, which is composed of immunoglobulins or immunoglobulin fragments obtained from the plasma of animals hyperimmunized with one (monospecific) or several (polyspecific) venoms. In this review, the efforts made in the improvement of the already available antivenoms and the development of new antivenoms, focusing on snakes of medical importance from sub-Saharan Africa and Latin America, are described. Some antivenoms currently used are composed of whole IgGs, whereas others use F(ab’)2 fragments. The classic methods of attaining snake antivenoms are presented, in addition to new strategies to improve their effectiveness. Punctual changes in immunization protocols, in addition to the use of cross-reactivity between venoms from different snakes for the manufacture of more potent and widely used antivenoms, are presented. It i...

Induction of neutralizing antibodies in mice immunized with scorpion toxins detoxified by liposomal entrapment

Brazilian Journal of Medical and Biological Research, 1997

The possibility of producing neutralizing antibodies against the lethal effects of scorpion toxins was evaluated in the mouse model by immunization with an immunogen devoid of toxicity. A toxic fraction (5 mg) from the venom of the scorpion Tityus serrulatus was entrapped in sphingomyelin-cholesterol liposomes. The liposomes were treated for 1 h at 37 o C with a 1% (w/w) trypsin solution in 0.2 M sodium carbonate buffer, pH 8.3. This treatment led to a strong reduction in venom toxicity. Immunization was performed as follows: mice were injected sc with 20 µg of the liposome-entrapped toxic fraction on days 1 and 21 and a final injection (20 µg) was administered ip on day 36. After injection of the immunogen, all mice developed an IgG response which was shown to be specific for the toxic antigen. The antibodies were measured 10 days after the end of the immunization protocol. In an in vitro neutralization assay we observed that pre-incubation of a lethal dose of the toxic fraction with immune serum strongly reduced its toxicity. In vivo protection assays showed that mice with anti-toxin antibodies could resist the challenge with the toxic fraction, which killed, 30 min after injection, all nonimmune control mice.

Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential

Toxins

Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell prol...

A lipidomics approach reveals new insights into Crotalus durissus terrificus and Bothrops moojeni snake venoms

Archives of Toxicology, 2020

Snakebite envenomation causes > 81,000 deaths and incapacities in another 400,000 people worldwide every year. Snake venoms are complex natural secretions comprised of hundreds of different molecules with a wide range of biological functions that after injection cause local and systemic manifestations. Although several studies have investigated snake venoms, the majority have focused on the protein portion (toxins), without significant attention paid to the lipid fraction. Therefore, an untargeted lipidomic approach based on liquid chromatography with high-resolution mass spectrometry (LC-HRMS) was applied to investigate the lipid constituents of venoms of the snake species Crotalus durissus terrificus and Bothrops moojeni. Phosphatidylcholines (PC), Lyso-PCs, phosphatidylethanolamines (PE), Lyso-PE, phosphatidylserine (PS), phosphatidylinositol (PI), ceramides (Cer), and sphingomyelin (SM) species were detected in the analyzed snake venoms. The identified lipids included bioactive compounds such as platelet-activating factor (PAF) precursor, PAF-like molecules, plasmalogens, ceramides, and sphingomyelins with long fatty acid chain lengths, which may be associated with the systemic responses triggered by C. d. terrificus and B. moojeni envenomation. These responses include platelet aggregation, activation of intercellular adhesion molecule 1 (ICAM1), apoptosis, as well as the production of pro-inflammatory lipid mediators, cytokines, and reactive species. The newly proposed lipidomics strategy provided valuable information regarding the lipid profiles of viperid venoms, which could lead to increased understanding of the complex pathology promoted by snakebite envenomation.

The effect of myotoxins isolated from Bothrops snake venoms on multilamellar liposomes: relationship to phospholipase A2, anticoagulant and myotoxic activities

Biochimica et Biophysica Acta …, 1991

Bioclhkw et Biophysics Am, 1 ON ( I99 1) 455 -460 0 1991 Elsevier Science Publishers B.V. All rights resewed ~H~OS-273h/91/$03.SO BBAMEM 75437 (Received I K February (Revised manuscript received Key WW~S: Myotosin; Snitkc VSIIOM; M~~ltihclli~r liposomc: Liposomc; Ph~~ph~lip~~se A ?. (IIot/wop.~ species) depend on the toxins' ntroduction Muscle-damaging toxins, myotoxins, are present in a variety of snake venoms [ 1,2]. Many of them are basic phospholipases A 2 which, besides myotoxicity, exert other pharmacological activities, such as anticoagulant, neurotoxic, cardiotoxic and inflammatory effects [ 1,3,4]. Several myotoxic phospholipases A, have been isolated from venoms of Bothrops species. Some of them are active enzymatically, such as Bothrops asper myotoxin 1[5,6], B. usper myotoxin III [7], Bothrvps afrox myotoxin [8] and a toxin from Bothrops jwwucussu venom [9]. In addition, there is a group of rnyot~ir~s which lack, or have extremely low, phospholipolytic

Evaluation of four different immunogens for the production of snake antivenoms

Toxicon, 1992

Q. LI and C. L. OwNBY. Evaluation of four different immunogens for the production of snake antivenoms. Toxicon 30, 1319-1330, 1992 .-Four different immunogens were used to produce polyvalent antivenom in rabbits to the venoms of Bothrops atrox, Crotalus atrox, Crotalus adamanteus and Crotalus durissus terricus. The immunogens were: (1) unfractionated mixture of the four crude venoms, and three fractions of the mixture as follows, (2) HPLC gel filtration high (> 50,000) mol. wt fraction, (3) HPLC gel filtration medium (14,000-50,000) mol. wt fraction, and (4) HPLC gel filtration low (< 14,000) mol. wt fraction. The resultant immune sera were compared with commercial antivenom (Wyeth, polyvalent Crotalidae) for total IgG content, ELISA reactivities, patterns of Western blots and ability to neutralize lethal and local hemorrhagic activities of the four venoms. The results indicate that the rabbit antivenoms had significantly higher ELISA reactivity and blotting signals than Wyeth antivenom. However, neither ELISA nor Western blotting signals correlated with the ability of the antivenoms to neutralize the lethal or hemorrhagic activities of the venoms. The protective ability of the antivenoms varied considerably. In general, antivenoms generated by using fractionated venoms as immunogens exhibited greater protective ability than antivenom produced by using the mixture of four venoms as immunogen. Some of the antivenoms provided greater or comparable protective ability for certain venoms when compared to Wyeth antivenom. It appears that the use of certain venom fractions as immunogens is a promising alternative for production of effective antivenoms .