Sound and the healthy city (original) (raw)
Abstract
In this paper we study a class of sub-spaces of loop spaces which have appeared in the calculus of variations. Generalizing a result of Smale, we show that the space of loops tangent to a distribution satisfying Hδrmander's condition is weakly homotopic to the space of all loops. If the distribution is fat, we resolve the end point map from the space of horizontal paths. This resolution has two applications: (1) the proof that the cut-locus on an analytic fat Carnot-Caratheodory manifold is sub-analytic; (2) a study of the singularity of the horizontal loop space. At the end we study the geometry of left-invariant Carnot-Caratheodory metrics on fact nilpotent groups.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (45)
- V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differ- entiable maps, vol. 1, Birkhauser, Boston, 1985.
- M. Atiyah and A. Pressley, Convexity and loop groups, Progr. Math., vol. 36, 33-64, Birkhauser, Basel, 1983.
- C. Bar, Geodesies for Carnot-Caratheodory metrices, preprint, 1989.
- G. Ben Arous, Noyau de la chaleur hypoelliptique et geometrie sous-riemann- ienne, in Stochastic Analysis, M. Metivier and S. Watanabe eds., Lecture Notes in Math., vol. 1322, Springer-Verlag, 1988.
- L. Bergery, Sur certaniesfibrations despaces homogenes riemannies, Compositio Math., (1975), 43-61.
- J. M. Bismut, Large derivations and the Malliavin calculus, Progr. Math., vol. 45, Birkhauser, Basel, 1984.
- R. Brockett, Control Theory and Singular Riemannian Geometry, in New Di- rections in Applied Mathematics, Springer-Verlag, New York, 1981.
- M. A. Buchner, Stability of the cut-locus in dimensions less than or equal to six, Invent. Math., 43 (1977), 199-237.
- W. L. Chow, Uber systeme von linearen partiellen differentialgleichungen erster order, Math. Ann., 117 (1939), 98-105.
- D. Freed, Geometry of the loop group, J. Differential Geom., 28 (1988), 223- 276.
- B. Gaveau, Principle de moindre action, propagation de la challeur et estimates sour-elliptic sur certains grouppes nilpotent, Acta Math., 139 (1977), 85-153.
- Zhong Ge, On a variational problem and the spaces of horizontal paths, Pacific J. Math., 149(1991), 61-93.
- E. Getzler, Dirichlet forms on loop spaces, Bull. Sci. Math., 2 e serie, 113 (1989), 151-174.
- R. W. Goodman, Nilpotent Groups, the Structure, and the Application to Anal- ysis, Lecture Notes in Math., vol. 562, Springer, 1977.
- D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology, 18 (1969), 361-369.
- M. Gromov, Sur structure metriques pour les varieties riemannian, Cedic- Nathan.
- Groups of polynomial growth and expanding maps, Inst. Hautes Sci. Publ. Math., 53(1981).
- U. Hammenstadt, Zur theorie von Carnot-Caratheodory-metriken und ihren an- wendungen doktorarbeit, Bonn 1986.
- Some regularity in Carnot-Caratheodory metrics, J. Differential Geom., 32 (1991), 192-201.
- R. Hermann, Some differential-geometric aspects of the Lagrangian variational problem, Illinois J. Math., 6 (1962), 634-673.
- S. Kobayashi, On conjugate and cut loci, in Studies in Global Geometry and Analysis, S. S. Chern ed., Mathematical Association of America, New Jersey, 1967.
- A. Koranyi, Geometric properties of Heisenberg-type group, Adv. in Math., 56 (1985), 28-38.
- A. Koranyi and H. M. Riemann, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309-338.
- J. Milnor, Morse theory, Ann. of Math. Studies, vol. 51, Princeton, N.J., 1963.
- Singularity on the complex hyperplane, Ann. of Math. Studies, vol. 61, Princeton, N.J., 1968.
- J. Mitchell, On Carnot-Caratheodory metrics, J. Differential Geom., 21 (1985), 35-45.
- R. Montgomery, The isoholonomic problem and some applications, Comm. Math. Phys., 128 (1990), 565-592.
- The geodesies which do not satisfy the geodesic equations, preprint.
- P. Orlik and P. Wagreigh, Isolated singularities of algebraic surfaces with C* action, Ann. of Math., 93 (1971), 205-228.
- P. Pansu, Croissance des boules et quasiisometries dans les nilvarieties, Ergodic Theory Dynamical Systems, 3 (1983), 441-443.
- Metήques de Carnot-Cartheodory et quasiisometries des espaces syme- triques de rang an, Ann. of Math., 129 (1989), 441-443.
- C. B. Rayer, The exponential map for the Lagrange problem on differentiable manifold, Phil. Trans. Roy. Soc. London, A, Math, and Phys., 1127 (1967), 299-344.
- L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320.
- S. Smale, Regular curves on Riemannian manifold, Trans. Amer. Math. Soc, 87(1958), 446-462.
- E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1986.
- R. S. Strichartz, Sub-riemannian geometry, J. Differential Geom., 24 (1986), 221-263.
- M. Tamm, Sub-analytic sets in the calculus ofvariations, Acta Math., 146 (1981), 167-199.
- T. Taylor, Some aspects of differential geometry associated with hypoelliptic sec- ond order operators, Pacific J. Math., 136 (1989), 355-378.
- A. M. Vershik and C. Ya. Gershkovich, Non-holonomic manifolds and nilpotent analysis, J. Geom. Phys., 5 (1988), no. 3.
- S. Webster, Pseudo-hermitian structures on a real hyperplane, J. Differential Geom., 13 (1978), 25-40.
- A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math., 37 (1980), 239-250.
- H. Sussmann, Subanalyticity of the distance functions for real analytic sub- Riemannian metrics on three dimensional manifolds, Report SYCON-91-05a, Rutgers, 1991.
- S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, vol. 2, In- terscience, 1963.
- A. Kupka, The ubiquity of Fuller's phenomenon, in Nonlinear Controllablity and Optimal Control, Sussmann ed., Marcel Dekker, 1990, 313-350.
- Received April 24, 1991 and in revised form June 22, 1992. This work was supported in part by the National Sciences Foundation of China for Young Scientists.